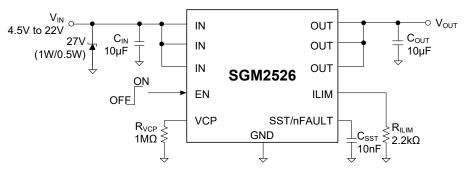


SGM2526 Programmable Current Limit Switch with Over-Voltage Protection

GENERAL DESCRIPTION

SGM2526 is a programmable current limit switch with input voltage range selection and output voltage clamping. Extremely low $R_{DS(ON)}$ of the integrated protection N-channel MOSFET helps to reduce power loss during the normal operation. Programmable soft-start time controls the slew rate of the output voltage during the start-up time. Independent enable control allows the complicated system sequencing control. It integrates the over-temperature protection shutdown and auto-recovery with hysteresis.

The SGM2526 is available in a Green TDFN-3×3-10L package and operates over a temperature range of -40°C to +85°C.


FEATURES

- Wide Input Voltage Range from 4.5V to 22V with Surge up to 30V
- Extremely Low R_{DS(ON)} for the Integrated Protection Switch: 23mΩ
- Programmable Soft-Start Time
- Programmable Current Limit: 5A (MAX)
- Thermal Shutdown Protection & Auto-Recovery
- Selectable Input Range and Clamping Output Voltage Threshold
- Enable Interface Pin
- -40°C to +85°C Operating Temperature Range
- Available in Green TDFN-3×3-10L Package

APPLICATIONS

Notebook PC
iPad Mini
Server
Service PC

TYPICAL APPLICATION

Figure 1. Typical Application Circuit

SGM2526

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM2526	TDFN-3×3-10L	-40°C to +85°C	SGM2526YTD10G/TR	SGM 2526D XXXXX	Tape and Reel, 4000	

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Vendor Code

— Date Code - Week
— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

IN, OUT, EN, VCP to GND0.3V to 30V
ILIM, SST/nFAULT to GND0.3V to 6V
Package Thermal Resistance
TDFN-3×3-10L, θ _{JA} 62°C/W
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM 4000V
MM
CDM 1000V

RECOMMENDED OPERATING CONDITIONS

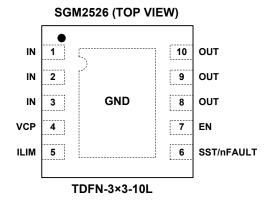
Supply Input Voltage......4.5V to 22V Ambient Temperature Range.....-40°C to +85°C Operating Junction Temperature Range.....-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

SGM2526

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 2, 3	IN	Power Input Pin. Decouple high frequency noise by connecting at least 0.1µF MLCC to ground.
4	VCP	Output Clamp Voltage Selection Based on the Input Voltage. Pull VCP pin to high by connecting a resistor to IN pin, or float VCP pin to select different output clamping thresholds, as shown in Table 1. Recommend to decoupling this pin with 0.1µF capacitor.
5	ILIM	Current Limit Program Pin. Program the current limit by connecting a resister to ground.
6	SST/nFAULT	Soft-Start Time Program and Fault Event Indicator Pin. Connect a capacitor to ground to program the soft-start time. nFAULT event indicator, goes low to indicate fault condition due to under-voltage or thermal shutdown event.
7	EN	Enable Interface Pin. Pull it high to enable the IC.
8, 9, 10	OUT	Power Output Pin.
Exposed Pad	GND	Ground Pin.

Table 1. Output Clamp Voltage Selection

VCP	V	00	Clamping Threshold (V)				
	VIN	(V)	MIN	ТҮР	MAX		
High	5	Over 6	5.5	5.7	5.9		
Open	12	Over 14	12.8	13.3	13.6		

ELECTRICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{IN} = 5V, R_{ILIM} = 10k\Omega, C_{SST} = 10nF, C_{IN} = 10\mu F and C_{OUT} = 10\mu F$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}		4.5		22	V
nput Voltage Range nput UVLO Threshold Voltage JVLO Hysteresis Bias Current Bhutdown Current ET On-Resistance Clamping Output Voltage Coft-Start Time ⁽¹⁾ Soft-Start Time Accuracy ⁽¹⁾ Current Limit Accuracy Current Limit Program Range ⁽²⁾ EN Turn-On Threshold Voltage EN Turn-Off Threshold Voltage Thermal Shutdown Temperature	N	VCP = High	3.4	3.6	3.8	V
Input UVLO Threshold Voltage	V _{UVLO}	VCP = Open	8.2	8.6	9.0	V
Shutdown Current	V	VCP = High		0.1		v
	V _{UVHYS}	VCP = Open		0.2		v
Bias Current	I _{BIAS}			170	200	μA
Shutdown Current	I _{SHDN}	EN = 0V		0.7	1.2	μA
FET On-Resistance	R _{DS(ON)}			23	29	mΩ
Clamping Output Voltage	V _{CLP}	VCP = High	5.5	5.7	5.9	V
Clamping Output Voltage		VCP = Open	12.8	13.2	13.6	V
Soft Start Time (1)		C _{SST} = 0F		1.4		ms
Solt-Start Time V	t _{sst}	C _{SST} = 10nF		2.6		ms
Soft-Start Time Accuracy (1)		C _{SST} = 10nF		±30% t _{SST}		
Current Limit Accuracy		R _{ILIM} = 11kΩ	0.92	1.0	1.09	А
Current Limit Program Range (2)	I _{LIM}		1		5	А
EN Turn-On Threshold Voltage	V _{EN_ON}	$T_{A} = -40^{\circ}C$ to +85°C	1.2			V
EN Turn-Off Threshold Voltage	$V_{\text{EN_OFF}}$	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			0.4	V
Thermal Shutdown Temperature	T _{SD}			150		°C
Thermal Shutdown Hysteresis	T _{HYS}			20		°C

NOTE 1:	
$t_{SST} = t_{SST_DLT}$ (No External C _{SST})	

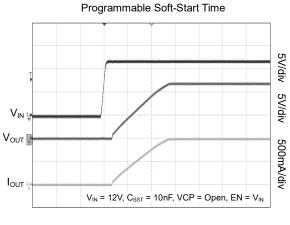
$$t_{\text{SST}} = \frac{C_{\text{SST}}}{I_{\text{INT}}} \times 1.2 \quad (t_{\text{SST}} > t_{\text{SST_DLT}})$$
(2)

where t_{SST_DLT} is the internally fixed default soft-start time, about 1.4ms, which means there's no any external C_{SST} ; I_{INT} is the internal current source, about 4.6µA. A capacitor (C_{SST}) of less than 10nF is recommended.

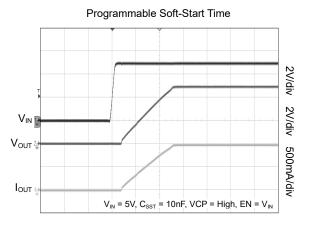
NOTE 2:

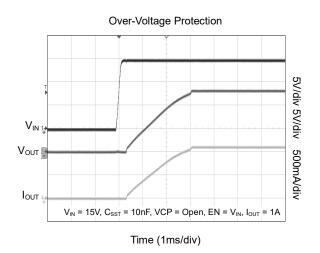
(1)

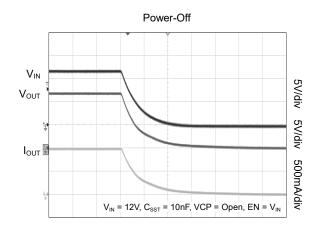
Recommended Current Limit Program Table:


R _{ILIM} (kΩ)	11	5.5	4.4	3.7	3.1	2.8	2.4	2.2
Current Limit (A)	1.0	2.0	2.5	3.0	3.5	4.0	4.5	5.0

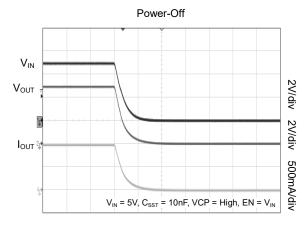
Recommended Formula for RILIM & Current Limit Calculation:

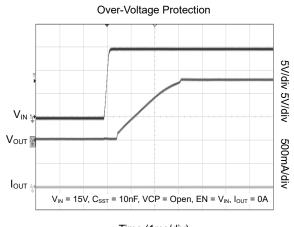

$$R_{ILIM} = \frac{11}{I_{LIM}} (k\Omega)$$
(3)


TYPICAL PERFORMANCE CHARACTERISTICS

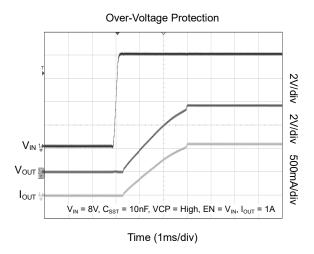


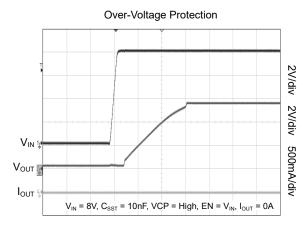
Time (1ms/div)



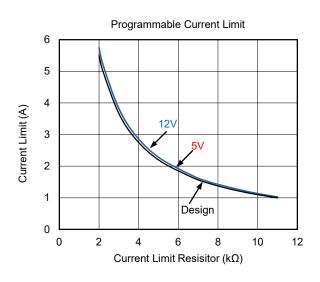


Time (50µs/div)

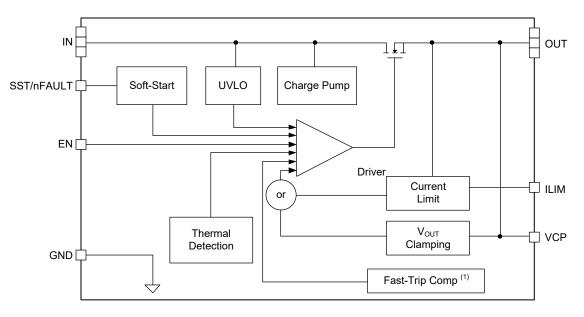




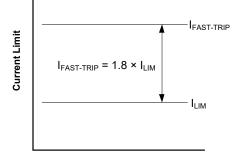
Time (1ms/div)


SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)



Time (1ms/div)


FUNCTIONAL BLOCK DIAGRAM

NOTES:

1. During a transient short-circuit event, the current through the device increases very rapidly. The current-limit amplifier cannot respond very quickly to this event due to its limited bandwidth. Therefore, the SGM2526 incorporates a fast-trip comparator, which shuts down the pass device very quickly when $I_{OUT} > I_{FAST-TRIP}$ ($I_{FAST-TRIP} = 1.8 \times I_{LIM}$), and terminates the rapid short-circuit peak current. After the transient short-circuit peak current has been terminated by the fast-trip comparator, the current limit amplifier smoothly regulates the output current to I_{LIM} .

2. When the switching voltage of SGM2526 is more than 15V, customer should add a no more than 27V (> 0.5W) zener diode to prevent the input voltage spike from damaging the SGM2526.

APPLICATION EXAMPLES

The SGM2526 provides simple solution for current limiting, in-rush current control and supervision of power rails for wide range of applications operating at 4.5V to 22V and delivering up to 5A.

Protection and Current Limiting for Primary-Side Regulated Power Supplies

Primary-side regulated power supplies and adapters are dominant today in many of the applications such as LCD-TV, fast charger, set-top boxes and gaming consoles.

- No secondary-side protection for immediate termination of critical faults such as short-circuit and over-voltage.
- Do not provide precision current limiting for over-load transients.
- Have poor output voltage regulation for sudden change in AC input voltages, triggering output over-voltage condition.

Many of the above applications require precision output current limiting and secondary-side protection, driving the need for current sensing in the secondary-side. This needs additional circuit implementation using precision operational amplifiers. This increases the complexity of the solution and also results in sensing losses. The SGM2526 with its integrated low-ohmic N-channel MOSFET provides a simple and efficient solution.

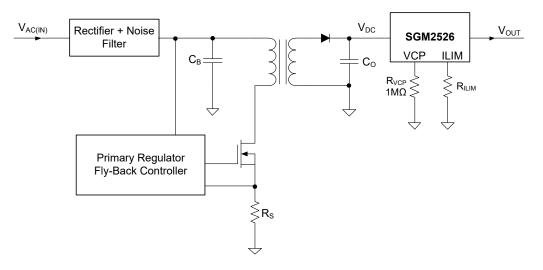


Figure 2. Current Limiting and Protection for AC-DC Power Supplies

APPLICATION EXAMPLES (continued)

Precision Current Limiting in Intrinsic Safety Applications

Intrinsic Safety (IS) is becoming prominent need for safe operation of electrical and electronic equipment in hazardous areas. Intrinsic Safety requires that equipment is designed such that the total amount of energy available in the apparatus is simply not enough to ignite an explosive atmosphere. The energy can be electrical, in the form of a spark, or thermal, in the form of a hot surface.

This calls for precision current limiting and precision shutdown of the circuit for over-voltage conditions ensuring that set voltage and current limits are not exceeded for wide operating temperature range and variable environmental conditions. Applications such as gas analyzers, medical equipment (such as electrocardiographs), portal industrial equipment, cabled power distribution systems and hand-held motor operated tools need to meet these critical safety standards.

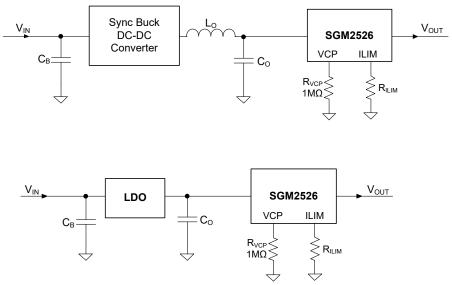
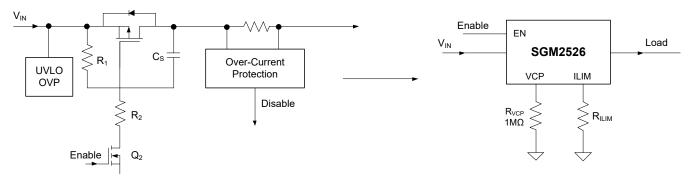


Figure 3. Precision Current Limit and Protection of Internal Rails



APPLICATION EXAMPLES (continued)

Smart Load Switch

A smart load switch is a series MOSFET used for switching of the load (resistive or inductive). It also provides protection during fault conditions. Typical discrete implementation is shown in Figure 4. Discrete solutions have higher component count and require complex circuitry to implement each of the protection fault needs.

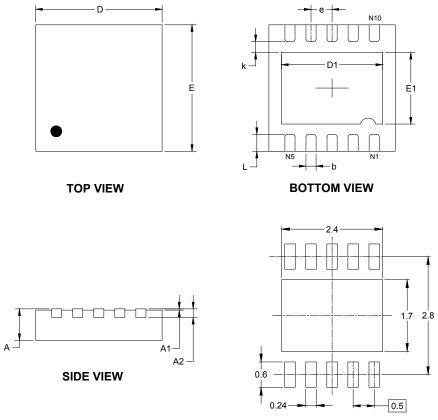
SGM2526 can be used as a smart power switch for applications ranging from 4.5V to 22V. SGM2526 provides programmable soft-start, programmable current limits, over-temperature protection, a fault flag and under-voltage lockout.

Figure 4. Smart Load Switch Implementation

Figure 4 shows typical implementation and usage as load switch. This configuration can be used for driving a solenoid and fan control. It is recommended to use a freewheeling diode across the load when load is highly inductive.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

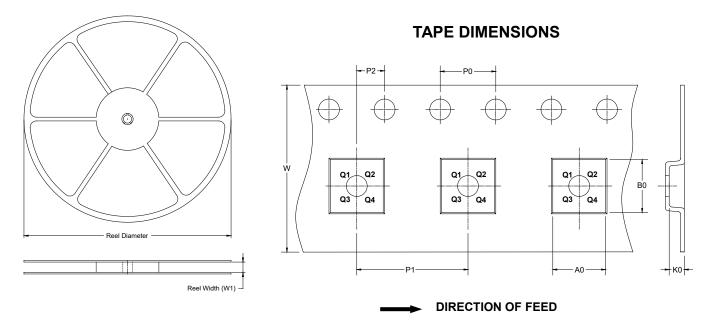

Changes from Original (DECEMBER 2018) to REV.A

Changed from product preview to production data......All

DECEMBER 2018 10

PACKAGE OUTLINE DIMENSIONS

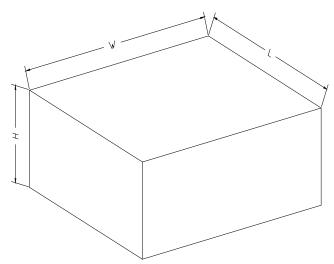
TDFN-3×3-10L


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimer In In	nsions ches
	MIN	MAX	MIN	MAX
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0.203	3 REF	0.008	REF
D	2.900	3.100	0.114	0.122
D1	2.300	2.600	0.091	0.103
E	2.900	3.100	0.114	0.122
E1	1.500	1.800	0.059	0.071
k	0.200) MIN	0.008	3 MIN
b	0.180	0.300	0.007	0.012
е	0.500) TYP	0.020	TYP
L	0.300 0.500		0.012	0.020

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TDFN-3×3-10L	13″	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)			Pizza/Carton	
13″	386	280	370	5	DD0002

