

8-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

GENERAL DESCRIPTION

This 8-bit non-inverting bus transceiver uses two separate configurable power-supply rails. The SGM8T245 is optimized to operate with $V_{\rm CCA}/V_{\rm CCB}$ set at 1.2V to 5.0V. The A port is designed to track $V_{\rm CCA}$. $V_{\rm CCA}$ accepts any supply voltage from 1.2V to 5.0V. The B port is designed to track $V_{\rm CCB}$. $V_{\rm CCB}$ accepts any supply voltage from 1.2V to 5.0V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5.0V voltage nodes.

The SGM8T245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable $(\overline{\text{OE}})$ input can be used to disable the outputs so the buses are effectively isolated.

The SGM8T245 solution is compatible with a single-supply system and can be replaced later with the SGM7SZ245 function, with minimal printed circuit board redesign.

This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} circuitry disables the outputs, thus preventing damaging current backflow through the device when it is powered down.

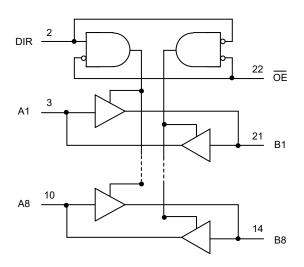
To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ shall be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SGM8T245 is available in Green TSSOP-24 and TQFN-5.5×3.5-24L packages. It operates over an ambient temperature range of -40°C to +125°C.

FEATURES

- Control Inputs V_{IH}/V_{IL} Levels are Referenced to V_{CCA} Voltage
- V_{CC} Isolation: If Either V_{CC} Input is at GND,
 All I/O Ports are in the High-Impedance State
- I_{OFF}: Supports Partial Power-Down Mode Operation
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 5.0V Power-Supply Range
- I/Os are 6.0V Tolerant
- -40°C to +125°C Operating Temperature Range
- Available in Green TSSOP-24 and TQFN-5.5×3.5-24L Packages

APPLICATIONS


Personal Electronic

Industrial

Enterprise

Telecom

LOGIC DIAGRAM

NOTE: Positive logic.

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8T245	TSSOP-24	-40°C to +125°C	SGM8T245XTS24G/TR	SGM8T245 XTS24 XXXXX	Tape and Reel, 4000
	TQFN-5.5×3.5-24L	-40°C to +125°C	SGM8T245XTQQ24G/TR	SGM8T245 XTQQ XXXXX	Tape and Reel, 3000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

ADSOLUTE IVIANTIVIUWI KATINGS
Supply Voltage Range
V _{CCA} 0.3V to 6.0V
V _{CCB} 0.3V to 6.0V
Input Voltage Range, V _I ⁽¹⁾
A Ports0.3V to 6.0V
B Ports0.3V to 6.0V
Control Inputs0.3V to 6.0V
Voltage Range Applied to Any Output in the High-Impedance
or Power-Off State, V _O ⁽¹⁾
A Ports0.3V to 6.0V
B Ports0.3V to 6.0V
Voltage Range Applied to Any Output in the High or Low
State, V _O (1) (2)
A Ports0.3V to V _{CCA} + 0.3V
B Ports0.3V to V _{CCB} + 0.3V
Input Clamp Current, I_{IK} ($V_I < 0$)70mA (MAX)
Output Clamp Current, I_{OK} ($V_O < 0$)70mA (MAX)
Continuous Output Current, I_{0} 70mA to 70mA
Continuous Output Current through V_{CCA} , V_{CCB} , or GND, I_{O}
-100mA to 100mA
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM6000V
MM400V
CDM1000V

NOTES:

- 1. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. The output positive-voltage rating may be exceeded up to 6.0V maximum if the output current rating is observed.

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

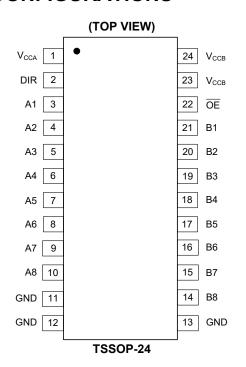
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

8-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

RECOMMENDED OPERATING CONDITIONS (1) (2) (3)


Supply Voltage Range	
V _{CCA}	1.2V to 5.0V
V _{CCB}	1.2V to 5.0V
V _{IH} , High-Level Input Voltage (D	ata Inputs)
(V _{CCI} = 1.2V to 1.4V)	0.85 × V _{CCI} (MIN)
(V _{CCI} = 1.4V to 2.3V)	0.75 × V _{CCI} (MIN)
(V _{CCI} = 2.3V to 3.3V)	1.75V (MIN)
(V _{CCI} = 3.3V to 5.0V)	2.2V (MIN)
V _{IL} , Low-Level Input Voltage (Da	ata Inputs)
(V _{CCI} = 1.2V to 1.4V)	0.1 × V _{CCI} (MAX)
(V _{CCI} = 1.4V to 2.3V)	0.15 × V _{CCI} (MAX)
(V _{CCI} = 2.3V to 3.3V)	0.5V (MAX)
(V _{CCI} = 3.3V to 5.0V)	0.65V (MAX)
V _{IH} , High-Level Input Voltage (Control Inputs, referenced to
V _{CCA})	
(V _{CCI} = 1.2V to 1.4V)	0.85 × V _{CCA} (MIN)
(V _{CCI} = 1.4V to 2.3V)	0.75 × V _{CCA} (MIN)
(V _{CCI} = 2.3V to 3.3V)	1.75V (MIN)
(V _{CCI} = 3.3V to 5.0V)	2.2V (MIN)

V_{IL} , Low-Level Input Voltage (Control Inputs, referenced to
V _{CCA})
(V _{CCI} = 1.2V to 1.4V)
(V _{CCI} = 1.4V to 2.3V)
(V _{CCI} = 2.3V to 3.3V)
(V _{CCI} = 3.3V to 5.0V)
V _I , Input Voltage Range0V to 5.0V
V _o , Output Voltage Range
Active State
3-State 0V to 5.0V
Input Transition Rise or Fall Rate, Δt/ΔV 3ns/V (MAX)
Operating Temperature Range40°C to +125°C

NOTES:

- 1. V_{CCI} is the V_{CC} associated with the input ports.
- 2. V_{CCO} is the V_{CC} associated with the output ports.
- 3. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation.

PIN CONFIGURATIONS

 V_{CCA} V_{CCB} 24 1 DIR 2 23 V_{CCB} 3 22 ŌĒ 21 В1 A2 5 20 B2 АЗ 6 19 ВЗ Α4 GND 18 Α5 B4 Α6 8 17 B5 9 16 B6 A7 Α8 10 15 B7 11 GND 14 B8

(TOP VIEW)

TQFN-5.5×3.5-24L

GND

GND

PIN DESCRIPTION

	PIN	NAME	I/O	EUNICTION
TSSOP-24	TQFN-5.5×3.5-24L	NAIVIE	1/0	FUNCTION
1	1	V_{CCA}	-	A Ports Supply Voltage. $1.2V \le V_{CCA} \le 5.0V$.
2	2	DIR	I	Direction-Control Signal.
3	3	A1	I/O	Input/Output A1. Referenced to V _{CCA} .
4	4	A2	I/O	Input/Output A2. Referenced to V _{CCA} .
5	5	A3	I/O	Input/Output A3. Referenced to V _{CCA} .
6	6	A4	I/O	Input/Output A4. Referenced to V _{CCA} .
7	7	A5	I/O	Input/Output A5. Referenced to V _{CCA} .
8	8	A6	I/O	Input/Output A6. Referenced to V _{CCA} .
9	9	A7	I/O	Input/Output A7. Referenced to V _{CCA} .
10	10	A8	I/O	Input/Output A8. Referenced to V _{CCA} .
11, 12, 13	11, 12, 13	GND	-	Ground.
14	14	B8	I/O	Input/Output B8. Referenced to V _{CCB} .
15	15	В7	I/O	Input/Output B7. Referenced to V _{CCB} .
16	16	В6	I/O	Input/Output B6. Referenced to V _{CCB} .
17	17	B5	I/O	Input/Output B5. Referenced to V _{CCB} .
18	18	B4	I/O	Input/Output B4. Referenced to V _{CCB} .
19	19	В3	I/O	Input/Output B3. Referenced to V _{CCB} .
20	20	B2	I/O	Input/Output B2. Referenced to V _{CCB} .
21	21	B1	I/O	Input/Output B1. Referenced to V _{CCB} .
22	22	ŌĒ	I	3-State Output-Mode Enable. Pull $\overline{\text{OE}}$ high to place all outputs in 3-state mode. Referenced to V_{CCA} .
23, 24	23, 24	V_{CCB}	-	B Ports Supply Voltage. $1.2V \le V_{CCB} \le 5.0V$.
_	Exposed Pad	GND	_	Exposed Pad is Internally Connected to GND. Connect it to a large ground plane to maximize thermal performance; not intended as an electrical connection point.

ELECTRICAL CHARACTERISTICS (1) (2)

(Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAME	TER	SYMBOL		С	ONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
				V _{CCA} = 1.2 I _{OH} = -100	VV to 5.0V, $V_{CCB} = 1.2V$ to 5.0V, V_{HA}	+25°C		V _{CCO} - 0.005			
				V _{CCA} = 1.2	$2V$, $V_{CCB} = 1.2V$, $I_{OH} = -1mA$	+25°C		1.17			
	High-Level Output Voltage		V _I = V _{IH}	$V_{CCA} = 1.4$	$V, V_{CCB} = 1.4V, I_{OH} = -5mA$	+25°C		1.27		V	
Vollage				V _{CCA} = 1.65V, V _{CCB} = 1.65V, I _{OH} = -16mA			1.10	1.32			
				$V_{CCA} = 2.3$	$V_{CCB} = 2.3V_{OH} = -20mA$	Full	1.90	2			
				$V_{CCA} = 5.0$	$V_{CCB} = 5.0V, I_{OH} = -20mA$	Full	4.70	4.83			
				$V_{CCA} = 1.2$ $I_{OL} = 100\mu$	VV to 5.0V, $V_{CCB} = 1.2V$ to 5.0V,	+25°C		0.005			
			$V_I = V_{IL}$	$V_{CCA} = 1.2V, V_{CCB} = 1.2V, I_{OL} = 1mA$				0.02		V	
Low-Level Out	put	V _{OL} \		$V_{I} = V_{IL}$ $V_{CCA} = 1.4V, V_{CCB} = 1.4V, I_{OL} = 5mA$				0.09			
Voltage				V _{CCA} = 1.6	55V, V _{CCB} = 1.65V, I _{OL} = 16mA	Full		0.25	0.40		
				V _{CCA} = 2.3	V, V _{CCB} = 2.3V, I _{OL} = 20mA	Full		0.2	0.36		
				$V_{CCA} = 5.0$	V, V _{CCB} = 5.0V, I _{OL} = 20mA	Full		0.18	0.27		
Input Leakage Current	Control Inputs	I _I	$V_{CCA} = 1.2$ $V_{I} = V_{CCA}$		Y _{CCB} = 1.2V to 5.0V,	Full		±0.01	11	μΑ	
Power Off	A or B		\/ 05\/ -	0V to 5.0V	$V_{CCA} = 0V$, $V_{CCB} = 0V$ to 5.0V	Full		±0.01	14		
Leakage Current	Ports	I _{OFF}	V ₁ OI V ₀ –	00 10 5.00	$V_{CCA} = 0V$ to 5.0V, $V_{CCB} = 0V$	Full		±0.01	14	μΑ	
3-State Output Leakage	A or B Ports	I _{OZ} ⁽³⁾	00/1	$V_{CCB} = 5.$ or GND, V_{I}	OV , $= V_{CCI}$ or GND , $\overline{OE} = V_{IH}$	Full		±0.01	11	μΑ	
		I _{CCA}				Full			15		
Quiescent Sup Current	ply	I _{CCB}			/ _{CCB} = 1.2V to 5.0V,	Full			24	μA	
	Current		1 1001	$V_i = V_{CCI}$ or GND, $I_O = 0$					25		
Input Capacitance	Control Inputs	Cı	V _{CCA} = 3.3	BV, V _{CCB} = 3.	3V, V _I = 3.3V or GND	+25°C		12.3		pF	
Input/Output Capacitance	A or B Ports	C _{IO}	V _{CCA} = 3.3	$V_{CCB} = 3.$	3V, V _O = 3.3V or GND	+25°C		9.8		pF	

NOTES:

- 1. V_{CCO} is the V_{CC} associated with the output ports.
- 2. V_{CCI} is the V_{CC} associated with the input ports.
- 3. For I/O ports, the parameter I_{OZ} includes the input leakage current.

SWITCHING CHARACTERISTICS

(V_{CCA} = 1.2V, unless otherwise noted.)

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} =1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	LIMITE									
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS									
t _{PLH}	Α	В	62.1	42.9	36.8	31.9	30.9	31.1										
t _{PHL}	A	Б	143.9	97.7	86.2	77.9	75.3	80.2	ns									
t _{PLH}	В	А	50.8	45.8	43.5	41.0	40.2	39.2	ns									
t _{PHL}		A	132.7	87.8	77.2	71.9	70.2	70.9	115									
t _{PZH}	ŌĒ	А	167.5	150.1	146.1	144.1	144.2	146.6	20									
t _{PZL}		^	123.5	123.5	123.5	123.5	123.5	124.6	ns									
t _{PZH}	OE	В	159.3	141.3	134.5	130.5	129.7	131.7	no									
t _{PZL}	DL	Б	132.7	120.3	115.6	110.4	110.9	113.7	ns									
t_{PHZ}	0 =	<u> </u>		- -		<u></u>	<u></u>	OE	<u> </u>	<u></u>	^	55.6	55.6	55.6	55.6	55.6	56.0	20
t _{PLZ}) L	OE A	56.4	56.4	56.4	56.4	56.4	56.9	ns									
t _{PHZ}	0.5	<u> </u>	В	68.2	63.0	63.8	61.9	70.3	72.8	20								
t _{PLZ}	Œ	ŌE B	66.0	60.6	59.9	58.7	61.7	64.8	ns									

SWITCHING CHARACTERISTICS (continued)

(V_{CCA} = 1.5V, unless otherwise noted.)

DADAMETED	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} =1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	LINUTO												
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS												
t _{PLH}	Α	В	46.2	28.0	21.5	16.6	14.6	13.5	20												
t _{PHL}	τ.	Б	98.3	54.4	41.9	33.0	29.8	28.0	ns												
t _{PLH}	В	А	31.6	26.3	24.0	21.3	17.6	19.5	ns												
t _{PHL}	В	A	97.3	52.4	42.6	36.7	34.8	34.4	110												
t _{PZH}	<u></u>	ŌĒ	А	83.6	66.2	62.6	60.0	59.5	59.5	ns											
t _{PZL}	OE	A	50.7	50.7	50.7	50.7	50.7	50.7	113												
t _{PZH}	OE	В	82.3	63.5	57.1	52.2	50.4	49.2	ns												
t _{PZL}	D	В	66.6	54.1	49.3	45.2	43.8	43.4	110												
t _{PHZ}	ŌĒ	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u></u>	OF.	<u> </u>	OF A	27.8	27.8	27.8	27.8	27.8	27.8	20
t _{PLZ}		OE A	26.3	26.3	26.3	26.3	26.3	26.3	ns												
t _{PHZ}	<u></u>	<u> </u>	<u> </u>	В	38.6	33.1	32.9	31.4	38.3	36.1	nc										
t _{PLZ}	ŌE	٥	35.6	30.3	30.5	27.2	30.0	27.6	ns												

SWITCHING CHARACTERISTICS (continued)

(V_{CCA} = 1.8V, unless otherwise noted.)

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} =1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS	
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS	
t _{PLH}	Α	В	42.6	24.4	18.0	12.7	10.8	9.3	20	
t _{PHL}	A	Б	88.3	45.5	32.1	20.8	20.2	18.2	ns	
t _{PLH}	В	А	25.0	19.4	17.2	14.8	13.8	12.9	ns	
t _{PHL}	В	Т В	A	86.3	40.8	31.5	25.6	23.6	22.9	116
t _{PZH}	<u> </u>	ŌĒ	А	61.7	44.0	40.3	37.8	37.4	37.3	2
t _{PZL}	D	A	31.5	31.5	31.5	31.5	31.5	31.5	ns	
t _{PZH}	OE	D	64.5	45.6	38.6	33.6	31.6	30.2	ns	
t _{PZL}	DL	В	50.5	38.5	33.3	30.6	27.7	27.1	116	
t _{PHZ}			21.6	21.6	21.6	21.6	21.3	21.6	ns	
t _{PLZ}	ŌE	OE A	19.8	19.8	19.8	19.8	19.3	19.8		
t _{PHZ}		<u> </u>	В	32.6	27.1	26.3	23.8	30.1	27.9	20
t _{PLZ}	OE	D	27.1	22.6	21.7	18.4	21.5	18.5	ns	

SWITCHING CHARACTERISTICS (continued)

(V_{CCA} = 2.5V, unless otherwise noted.)

DADAMETED	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} =1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	LINITO	
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS	
t _{PLH}	Α	В	39.6	21.0	14.8	9.5	7.6	6.0	20	
t _{PHL}	τ.	Б	82.1	38.5	25.8	17.0	14.2	11.1	ns	
t_{PLH}	В	А	19.8	14.2	11.8	9.3	8.2	7.4	ns	
t_{PHL}		A	78.9	32.7	22.7	16.9	14.8	14.4	115	
t_{PZH}	ŌĒ	ŌĒ	A	46.1	29.7	25.6	23.1	22.5	22.2	ns
t_{PZL}) 	Α	18.9	19.5	19.5	19.5	19.5	19.5	113	
t _{PZH}	OE	В	49.8	33.0	26.5	21.0	19.0	17.9	ns	
t_{PZL}	D	В	39.8	26.7	22.7	18.5	17.0	15.9	115	
t_{PHZ}	OE	^	13.4	13.4	13.4	13.4	13.4	13.4		
t_{PLZ}	OE	OE A	11.0	11.0	11.0	11.0	11.0	11.0	ns	
t_{PHZ}	<u></u>	В	24.6	18.7	19.5	17.2	23.6	21.0	ne	
t _{PLZ}	ŌĒ	D	21.4	16.1	16.3	12.8	15.5	12.5	ns	

SWITCHING CHARACTERISTICS (continued)

 $(V_{CCA} = 3.3V, unless otherwise noted.)$

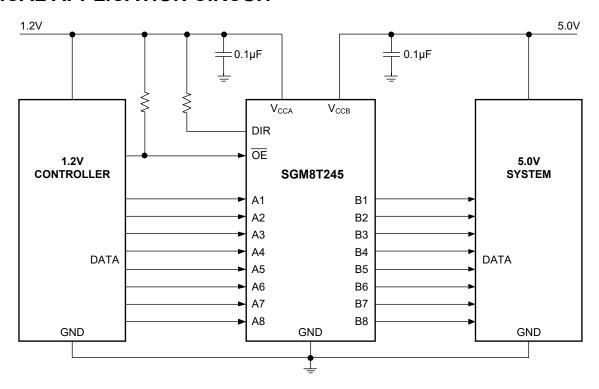
PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} =1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	UNITS													
PARAMETER	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS													
t _{PLH}	Α	В	38.2	19.8	14.9	8.3	6.4	5.0	20													
t _{PHL}	A	Ь	80.0	36.6	22.5	15.1	12.0	10.6	ns													
t _{PLH}	В	А	18.6	12.0	9.7	7.2	6.4	5.2	ns													
t _{PHL}	Ь	A	76.6	29.9	19.7	13.7	12.7	12.4	115													
t _{PZH}	<u> </u>	OF.	ŌĒ	А	39.8	24.1	20.2	17.8	17.2	16.8	20											
t _{PZL}	D	A	14.1	14.1	14.1	14.4	14.1	14.1	ns													
t _{PZH}	OE	D	46.1	28.0	21.8	16.5	14.8	13.2	2													
t _{PZL}	0E	В	40.3	25.2	20.0	15.8	14.0	12.7	ns													
t _{PHZ}	ŌĒ			<u> </u>			<u> </u>	<u> </u>	OE.	OE	OE		<u> </u>	<u> </u>		17.4	17.4	17.4	17.4	17.4	17.4	ne
t _{PLZ}		OE A	10.9	10.9	10.9	10.9	10.9	10.9	ns													
t _{PHZ}	ŌĒ	<u></u>	<u> </u>	<u> </u>	<u></u>	В	22.1	16.5	16.8	14.3	21.6	19.1	20									
t _{PLZ}		ם	18.6	13.7	13.2	10.2	12.6	9.9	ns													

SWITCHING CHARACTERISTICS (continued)

 $(V_{CCA} = 5.0V, unless otherwise noted.)$

PARAMETER	FROM	то	V _{CCB} = 1.2V	V _{CCB} = 1.5V	V _{CCB} =1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5.0V	LINUTO
TAKAMETEK (II	(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP	TYP	TYP	UNITS
t _{PLH}	Α	В	37.3	18.9	12.7	7.4	5.4	3.7	20
t _{PHL}	A	ь	76.3	36.5	23.6	14.7	10.4	9.6	ns
t _{PLH}	В	А	21.3	11.2	8.2	5.8	4.9	3.7	ns
t _{PHL}	ם	ζ	83.2	30.5	18.2	11.9	10.3	9.4	110
t _{PZH}	OE	А	37.5	20.6	17.6	15.1	13.9	13.6	ns
t _{PZL}		ζ	11.4	11.4	11.4	11.4	11.4	11.4	110
t _{PZH}	OE	В	47.7	27.6	20.9	15.3	13.3	11.7	ns
t _{PZL}	D	ם	34.2	22.2	17.3	13.1	11.9	11.0	110
t _{PHZ}	OE	۸	14.3	14.3	14.3	14.3	14.3	14.3	5
t _{PLZ}	OE	OE A	6.3	6.3	6.3	6.3	6.3	6.3	ns
t _{PHZ}	ŌE	В	20.0	14.5	15.0	12.9	18.1	16.0	ns
t _{PLZ}	UE	ט	17.3	13.4	11.9	8.3	10.5	7.6	115

OPERATING CHARACTERISTICS


 $(T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER								
		TEST CONDITIONS	1.5V	1.8V	2.5V	3.3V	5.0V	UNITS
			TYP	TYP	TYP	TYP	TYP	
C _{PD} ⁽¹⁾ A to B		C = 0 f = 10MHz + = + = 150	0.5	0.5	0.9	0.7	1.4	pF
CPD	$C_L = 0, f = 10MHz, t_r = t_f = 1ns$	0.5	0.5	0.5	0.6	0.7	ρг	

NOTE: 1. Power dissipation capacitance per transceiver.

TYPICAL APPLICATION CIRCUIT

Figure 1. Typical Application Circuit

PARAMETER MEASUREMENT INFORMATION

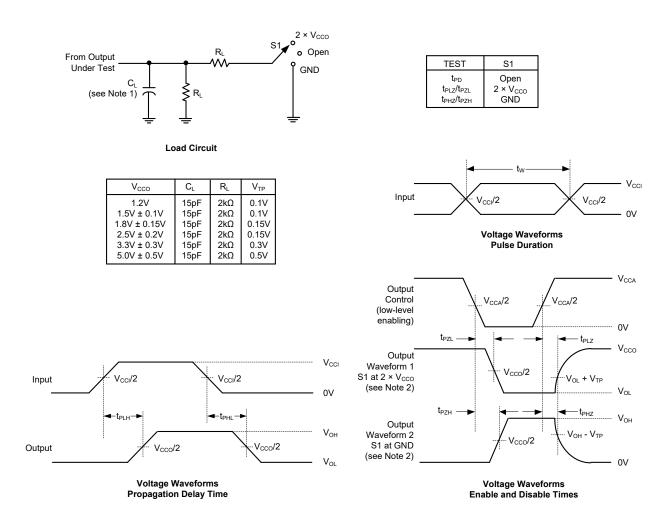


Figure 2. Load Circuit and Voltage Waveforms

NOTES:

- 1. C_L includes probe and jig capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10MHz, Z_O = 50Ω, dv/dt ≥ 1V/ns.
- 4. The outputs are measured one at a time, with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as t_{DIS}.
- 6. t_{PZL} and t_{PZH} are the same as t_{EN}.
- 7. t_{PLH} and t_{PHL} are the same as t_{PD}.
- 8. V_{CCI} is the V_{CC} associated with the input ports.
- 9. V_{CCO} is the V_{CC} associated with the output ports.

DETAILED DESCRIPTION

Overview

The SGM8T245 is an 8-bit, dual supply non-inverting bidirectional voltage-level translation. Pins A and control pins (DIR and $\overline{\text{OE}}$) are supported by V_{CCA} and pins B are supported by V_{CCB} . The A port is able to accept I/O voltages ranging from 1.2V to 5.0V while the B port can accept I/O voltages from 1.2V to 5.0V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when $\overline{\text{OE}}$ is set to low. When $\overline{\text{OE}}$ is set to high, both A and B are in the high-impedance state.

Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 5.0V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage between 1.2V and 5.0V, making the device suitable for translating between any of the low voltage nodes (1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5.0V).

I_{OFF} Supports Partial-Power-Down Mode Operation

I_{OFF} will prevent backflow current by disabling I/O output circuits when device is in partial power-down mode.

Device Functional Modes

The SGM8T245 is a voltage-level translator that can operate from 1.2V to 5.0V (V_{CCA}) and 1.2V to 5.0V (V_{CCB}). The signal translation between 1.2V and 5.0V requires direction control and output enable control. When \overline{OE} is low and DIR is high, data transmission is from A to B. When \overline{OE} is low and DIR is low, data transmission is from B to A. When \overline{OE} is high, both output ports will be high-impedance.

Table 1. Function Table (Each 8-Bit Section)

INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus.
L	Н	A data to B bus.
Н	Х	All outputs Hi-Z.

APPLICATION INFORMATION

The SGM8T245 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The SGM8T245 is ideal for data transmission which direction is different with each channel.

Design Requirements

For this design example, use the parameters listed in Table 2.

Table 2. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUE
Input Voltage Range	1.2V to 5.0V
Output Voltage Range	1.2V to 5.0V

Detailed Design Procedure

To begin the design process, determine the following:

1. Input voltage range

Use the supply voltage of the device that is driving the SGM8T245 to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{II} of the input port.

2. Output voltage range

Use the supply voltage of the device that the SGM8T245 is driving to determine the output voltage range.

Power Supply Recommendations

The SGM8T245 uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCA} accepts any

supply voltage from 1.2V to 5.0V and $V_{\rm CCB}$ accepts any supply voltage from 1.2V to 5.0V. The A port and B port are designed to track $V_{\rm CCA}$ and $V_{\rm CCB}$, respectively, allowing for low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5.0V voltage nodes.

The output-enable \overline{OE} input circuit is designed so that it is supplied by V_{CCA} and when the \overline{OE} input is high, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the \overline{OE} input pin must be tied to V_{CCA} through a pull-up resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pull-up resistor to V_{CCA} is determined by the current-sinking capability of the driver.

Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.

- 1. Bypass capacitors should be used on power supplies.
- 2. Short trace lengths should be used to avoid excessive loading.
- 3. Placing pads on the signal paths for loading capacitors or pull-up resistors to help adjust rise and fall times of signals depending on the system requirements.

Application Curve

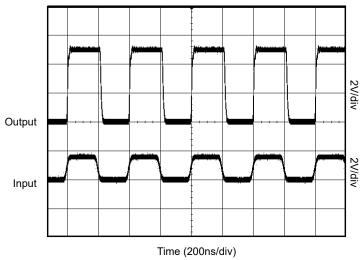
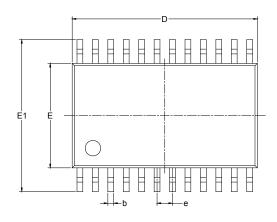
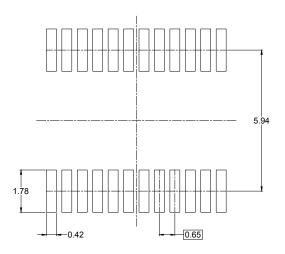


Figure 3. Translation Up (1.8V to 5.0V) at 2.5MHz

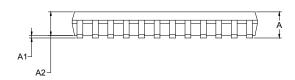
SGM8T245

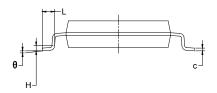
8-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and 3-State Outputs

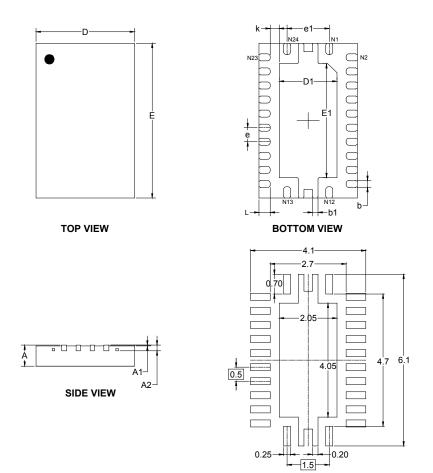

REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (DECEMBER 2017) to REV.A

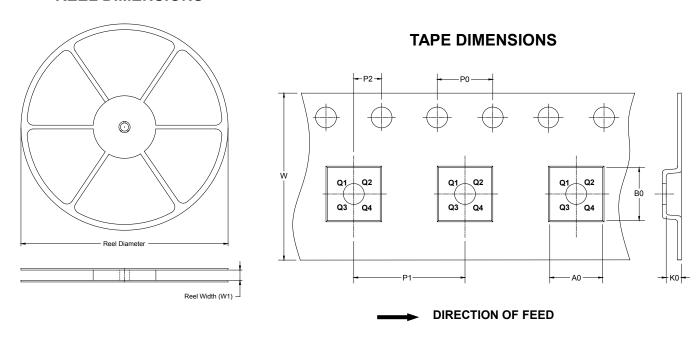



PACKAGE OUTLINE DIMENSIONS TSSOP-24


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
	MIN MAX		MIN	MAX	
Α		1.100		0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	7.700	7.900	0.303	0.311	
E	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650 BSC		0.026	BSC	
L	0.500	0.700	0.02	0.028	
Н	0.25 TYP		0.01	TYP	
θ	1°	7°	1°	7°	

PACKAGE OUTLINE DIMENSIONS TQFN-5.5×3.5-24L

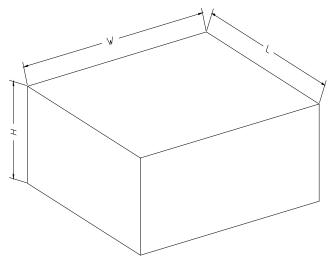


Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700 0.800 0.028		0.031		
A1	0.000	0.050	0.000	0.002	
A2	0.203	0.203 REF		REF	
D	3.400 3.600		0.134	0.142	
D1	1.950	2.150	0.077	0.085	
Е	5.400	5.600	0.213	0.220	
E1	3.950	4.150	0.156	0.163	
k	0.325 REF		0.013 REF		
b	0.200	0.300	0.008	0.012	
b1	0.150	0.250	0.006	0.010	
L	0.300	0.500	0.012	0.020	
е	0.500 BSC		0.020 BSC		
e1	1.500 BSC		0.059 BSC		

RECOMMENDED LAND PATTERN (Unit: mm)

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-24	13"	16.4	6.80	8.30	1.60	4.0	8.0	2.0	16.0	Q1
TQFN-5.5×3.5-24L	13"	12.4	3.80	5.80	1.00	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length Width (mm)		Height (mm)	Pizza/Carton	
13"	386	280	370	5	