

SGM4566 6-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

GENERAL DESCRIPTION

This 6-bit non-inverting voltage-level translator uses two separate configurable power-supply rails. The A ports are designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.2V to 5.5V. The B ports are designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.65V to 5.5V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5V voltage nodes. V_{CCA} should not exceed V_{CCB} .

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SGM4566 is designed so that the OE input circuit is supplied by $V_{\text{CCA}}.$

This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SGM4566 is available in Green TSSOP-16 and TQFN-2.6x1.8-16L packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- 1.2V to 5.5V on A Ports and 1.65V to 5.5V on B Ports (V_{CCA} ≤ V_{CCB})
- V_{CC} Isolation: If Either V_{CC} is at GND, All Outputs are in the High-Impedance State
- OE Input Circuit Referenced to V_{CCA}
- Low Power Consumption
- Push-Pull Output
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- -40°C to +85°C Operating Temperature Range
- Available in Green TSSOP-16 and TQFN-2.6×1.8-16L Packages

APPLICATIONS

Smart-Phone Portable Equipments UART GPIO

SGM4566

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM4566	TSSOP-16	-40°C to +85°C	SGM4566YTS16G/TR	SGM4566 YTS16 XXXXX	Tape and Reel, 4000
551014300	TQFN-2.6×1.8-16L	-40°C to +85°C	SGM4566YTQA16G/TR	4566 XXXXX	Tape and Reel, 3000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{CCA} , Supply Voltage Range0.3V to 6V
V _{CCB} , Supply Voltage Range0.3V to 6V
V _I , Input Voltage Range A Ports
B Ports0.3V to 6V
V _o , Voltage Range Applied to Any Output in the High-
Impedance or Power-Off State
A Ports0.3V to 6V
B Ports0.3V to 6V
$V_{\text{O}},$ Voltage Range Applied to Any Output in the High or Low
State ⁽¹⁾
A Ports 0.3V to V_{CCA} + 0.3V
B Ports 0.3V to V_{CCB} + 0.3V
I_{IK} , Input Clamp Current (V ₁ < 0)50mA
I _{OK} , Output Clamp Current (V _O < 0)25mA
Continuous Current through V_{CCA} , V_{CCB} , or GND
±100mA
Junction Temperature
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10sec)260°C
ESD Susceptibility
HBM
MM

NOTE: 1. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

SG Micro Corp www.sg-micro.com

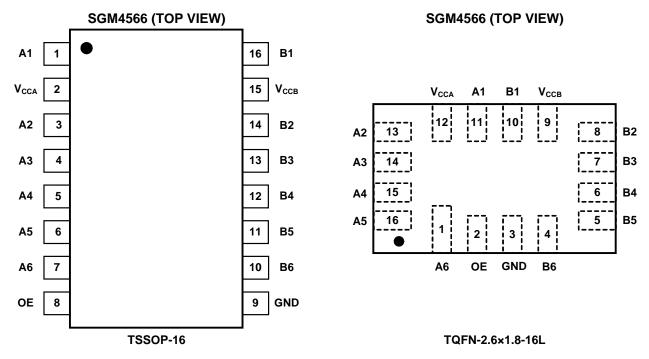
RECOMMENDED OPERATING CONDITIONS (2, 3)

Supply Voltage Range

V _{CCA}	1.2V to 5.5V
V _{CCB}	1.65V to 5.5V
High-Level Input Voltage, V _{IH}	
Data Inputs	V _{CCI} × 0.85 $^{(4)}$ to V _{CCI}
OE Input	
Low-Level Input Voltage, V _{IL}	
Data Inputs	0V to V _{CCI} $ imes$ 0.2 $^{(4)}$
OE Input	0V to $V_{CCA} \times 0.2$
Voltage Range Applied to Any Output	ut in the High-Impedance
or Power-Off State, Vo	
A Ports	0V to 5.5V
B Ports	0V to 5.5V
Input Transition Rise or Fall Rate, Δt	/ΔV
A Port Inputs	40ns/V (MAX)
B Port Inputs	40ns/V (MAX)
Operating Temperature Range	40°C to +85°C

NOTES:

2. The A and B sides of an unused data I/O pair must be held in the same state, i.e., both at V_{CCI} or both at GND.


3. V_{CCA} must be less than or equal to V_{CCB} and must not exceed 5.5V.

4. V_{CCI} is the supply voltage associated with the input ports.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN				
TSSOP-16	TQFN- 2.6×1.8-16L	NAME	FUNCTION		
1	11	A1	Input/Output 1. Referenced to V _{CCA} .		
2	12	V _{CCA}	A Ports Supply Voltage. 1.2V \leq V _{CCA} \leq 5.5V and V _{CCA} \leq V _{CCB.}		
3	13	A2	Input/Output 2. Referenced to V _{CCA} .		
4	14	A3	Input/Output 3. Referenced to V _{CCA} .		
5	15	A4	Input/Output 4. Referenced to V _{CCA} .		
6	16	A5	Input/Output 5. Referenced to V _{CCA} .		
7	1	A6	Input/Output 6. Referenced to V _{CCA} .		
8	2	OE	3-State Output-Mode Enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .		
9	3	GND	Ground.		
10	4	B6	Input/Output 6. Referenced to V _{CCB} .		
11	5	B5	Input/Output 5. Referenced to V _{CCB} .		
12	6	B4	Input/Output 4. Referenced to V _{CCB} .		
13	7	B3	Input/Output 3. Referenced to V _{CCB} .		
14	8	B2	Input/Output 2. Referenced to V _{CCB} .		
15	9	V _{CCB}	B Ports Supply Voltage. $1.65V \le V_{CCB} \le 5.5V$.		
16	10	B1	Input/Output 1. Referenced to V _{CCB} .		

ELECTRICAL CHARACTERISTICS (1)

(Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER		CON	DITIONS	TEMP	MIN	TYP	MAX	UNIT
		1 00.1	$V_{CCA} = 1.2V$	+25°C		1.05		
A Ports High Level Output	Voltage (V _{OHA})	I _{он} = -20µА	$V_{CCA} = 1.4V$ to 5.5V	Full	V _{CCA} - 0.3			
A Ports Low Level Output Voltage (V _{OLA})		1 00.1	$V_{CCA} = 1.2V$	+25°C		0.1		
A Ports Low Level Output	voltage (V _{OLA})	I _{OL} = 20μΑ	$V_{CCA} = 1.4V$ to 5.5V	Full			0.3	
B Ports High Level Output	Voltage (V _{OHB})	I _{OH} = -20µА	$V_{CCB} = 1.65V$ to 5.5V	Full	V _{CCB} - 0.3			
B Ports Low Level Output	Voltage (V _{OLB})	I _{OL} = 20μA	$V_{CCB} = 1.65V \text{ to } 5.5V$	Full			0.3	
Input Leakage Current	OE	$OE = V_{CCA}$ or GND,		+25°C			±1	
(I ₁)	OL	$V_{CCA} = 1.2V$ to 5.5	/, $V_{CCB} = 1.65V$ to 5.5V	Full			±1.5	
	A Ports	V_1 or $V_0 = 0V$ to 5.5	šV,	+25°C			±0.5	
Power Off Leakage Current (I _{OFF})	ATORS	$V_{CCA} = 0V, V_{CCB} = 0$)V to 5.5V	Full			±1	μA
	B Ports	V_1 or $V_0 = 0V$ to 5.5		+25°C			±0.5	μΛ
	DTORS	$V_{CCA} = 0V \text{ to } 5.5V,$	$V_{CCB} = 0V$	Full			±1	
3-State Output Leakage	A or B Ports	$OE = GND, V_{CCA} =$		+25°C			±0.5	
(I _{oz})		$V_{CCB} = 1.65V$ to 5.5	•	Full			±1	
			$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		0.1		
Quiescent Supply Current	(1)	$V_1 = V_{CC1}$ or GND, $I_0 = 0$.	$V_{CCA} = 1.4V$ to 5.5V, $V_{CCB} = 1.65V$ to 5.5V				12	- μΑ
Quescent Supply Current	(ICCA)	$OE = V_{CCA}$	$V_{CCA} = 5.5V,$ $V_{CCB} = 0V$	Full			12	
			$V_{CCA} = 0V,$ $V_{CCB} = 5.5V$				-1	
			$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		1		
	(1)	$V_{I} = V_{CCI}$ or GND,	$V_{CCA} = 1.4V$ to 5.5V, $V_{CCB} = 1.65V$ to 5.5V				10	- μΑ
Quiescent Supply Current	(ICCB)	$I_0 = 0,$ OE = V _{CCA}	$V_{CCA} = 5.5V,$ $V_{CCB} = 0V$	Full			-1	
			$V_{CCA} = 0V,$ $V_{CCB} = 5.5V$				9	
Outpoppent Summits Outpop	(1 . 1 .)	$V_{I} = V_{CCI}$ or GND,	$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		1		
Quiescent Supply Current	(ICCA + ICCB)	$I_O = 0,$ OE = V _{CCA}	$V_{CCA} = 1.4V$ to 5.5V, $V_{CCB} = 1.65V$ to 5.5V	Full			19	- μΑ
Quiescont Supply Current	(1)	$V_1 = V_{CC1}$ or GND,	$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		0.1		
Quiescent Supply Current (I _{CCZA})		l _o = 0, OE = GND	$V_{CCA} = 1.4V$ to 5.5V, $V_{CCB} = 1.65V$ to 5.5V	Full			12	- μΑ
		$V_{I} = V_{CCI}$ or GND,	$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		0.1		
Quiescent Supply Current	(ICCZB)	l _o = 0, OE = GND	$V_{CCA} = 1.4V$ to 5.5V, $V_{CCB} = 1.65V$ to 5.5V	Full			9	- μΑ
DE Input Capacitance (C _I)		$V_{CCA} = 1.2V$ to 5.5	/, $V_{CCB} = 1.65V$ to 5.5V	+25°C		5.2		pF
Input/Output	A Ports			+25°C		4.4		
Capacitance (C _{IO})	B Ports	$V_{CCA} = 1.2V$ to 5.5	+25°C		4.4		pF	

NOTE:

1. V_{CCI} is the supply voltage associated with the input ports.

SGM4566

6-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

TIMING REQUIREMENTS

		$V_{CCB} = 1.8V$	$V_{CCB} = 2.5V$	$V_{CCB} = 3.3V$	$V_{CCB} = 5V$	
		ТҮР	ТҮР	ТҮР	ТҮР	01113
(T _A = +25°C, V _{CCA} = 1.	2V, unless other	wise noted.)				
Data Rate		20	20	20	20	Mbps
Pulse Duration (t _w)	Data Inputs	50	50	50	50	ns
(T _A = +25°C, V _{CCA} = 1.	5V, unless other	wise noted.)				
Data Rate		50	50	50	50	Mbps
Pulse Duration (t _w)	Data Inputs	20	20	20	20	ns
(T _A = +25°C, V _{CCA} = 1.	8V, unless other	wise noted.)				-
Data Rate		52	60	60	60	Mbps
Pulse Duration (t _w)	Data Inputs	19	17	17	17	ns
(T _A = +25°C, V _{CCA} = 2	5V, unless other	wise noted.)				
Data Rate			70	100	100	Mbps
Pulse Duration (t _w)	Data Inputs		14	10	10	ns
(T _A = +25°C, V _{CCA} = 3	3V, unless other	wise noted.)				
Data Rate				100	100	Mbps
Pulse Duration (t _w)	Data Inputs			10	10	ns
(T _A = +25°C, V _{CCA} = 5	V, unless otherwi	se noted.)				
Data Rate					100	Mbps
Pulse Duration (t _w)	Data Inputs				10	ns

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.2V, unless otherwise noted.)

		FROM	то	$V_{CCB} = 1.8V$	V _{CCB} = 2.5V	$V_{CCB} = 3.3V$	$V_{CCB} = 5V$	
PAR	AMETER	(INPUT)	(OUTPUT)	TYP	TYP	ТҮР	TYP	UNITS
	t _{PLH}	^	P	22.9	19.8	19.0	18.9	
, t _{PHL}	A	В	30.5	29.0	30.0	31.3		
t _{PD}	t _{PLH}	в	A	32.0	33.2	30.1	28.9	ns
	t _{PHL}	В	A	22.1	19.5	18.1	14.7	
	t _{PZH}		٨	74.1	71.5	69.0	62.9	
	t _{PZL}	OE	A	60.0	54.2	52.6	50.0	
t _{EN}	t _{PZH}	UE UE	В	45.3	41.4	40.8	42.2	ns
	t _{PZL}	-	D	69.5	66.8	67.3	68.0	
	t _{PHZ}		٨	1060	1070	1040	1030	
	t _{PLZ}	05	A	500	500	510	520	
t _{DIS}	t _{PHZ}	OE	В	1090	1120	1100	1130	ns
	t _{PLZ}		В	570	590	580	570	
	t _{rA}	A Ports	Rise Time	21.5	22.2	21.2	20.2	ns
	t _{fA}	A Ports	Fall Time	9.6	10.1	9.5	8.7	ns
t _{rB}		B Ports	Rise Time	3.9	2.3	2.0	1.7	ns
	t _{fB}	B Ports	Fall Time	2.3	1.9	1.7	1.5	ns
t	SK(O)	Channel-to-0	Channel Skew	1	1	1	1	ns
	ta Rate			20	20	20	20	Mbps

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CCA} = 1.5V, unless otherwise noted.)$

DAD	AMETER	FROM	то	V _{CCB} = 1.8V	V _{ссв} = 2.5V	$V_{CCB} = 3.3V$	V _{CCB} = 5V	UNITS
PAR		(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	TYP	UNITS
	t _{PLH}	A	P	13.9	12.1	10.9	10.2	
	t _{PHL}	A	В	13.7	12.2	11.3	11.3	
t _{PD}	t _{PLH}	В	<u>^</u>	12.3	13.7	13.2	9.4	ns
	t _{PHL}	В	А	11.1	11.5	9.0	7.5	
	t _{PZH}		٨	32.0	31.3	31.2	30.3	
	t _{PZL}	05	A	32.9	28.8	27.3	26.0	
t _{EN}	t _{PZH}	OE		29.2	23.4	21.7	21.2	ns
	t _{PZL}		В	33.5	29.6	28.9	29.9	
	t _{PHZ}		<u>^</u>	1030	1030	1050	1050	
	t _{PLZ}	05	A	510	520	520	510	
t _{DIS}	t _{PHZ}	OE		1070	1120	1080	1110	ns
	t _{PLZ}		В	530	570	570	560	
	t _{rA}	A Ports	Rise Time	8.0	6.0	5.8	4.8	ns
	t _{fA}	A Ports	Fall Time	3.9	2.9	2.8	1.6	ns
	t _{rB}	B Ports	Rise Time	4.0	2.3	2.0	1.8	ns
	t _{fB}	B Ports	Fall Time	2.4	1.9	1.8	1.6	ns
1	SK(O)	Channel-to-0	Channel Skew	0.5	0.5	0.5	0.5	ns
Dat	ta Rate			50	50	50	50	Mbps

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.8V, unless otherwise noted.)

DAD	AMETER	FROM	то	V _{CCB} = 1.8V	V _{ссв} = 2.5V	$V_{CCB} = 3.3V$	$V_{CCB} = 5V$	UNITS
FAR/		(INPUT)	(OUTPUT)	TYP	TYP	TYP	TYP 8.3 7.7 7.4 5.7 20.8 20.0 16.4 21.8	UNITS
	t _{PLH}	A	В	13.8	10.2	9.0	8.3	
	t _{PHL}	A	В	10.6	9.0	8.2	7.7	
t _{PD}	t _{PLH}	В	٥	11.2	9.9	8.0	7.4	ns
	t _{PHL}	Б	A	8.6	6.8	7.4	5.7	
	t _{PZH}		٨	21.6	21.9	23.2	20.8	
	t _{PZL}		A	26.0	21.4	20.6	20.0	
t _{EN}	t _{PZH}	OE	P	24.8	19.0	17.2	16.4	ns
	t _{PZL}	-	В	24.7	21.3	20.8	21.8	
	t _{PHZ}		<u>^</u>	1080	1080	1090	1070	
	t _{PLZ}	OE	A	540	540	530	540	
t _{DIS}	t _{PHZ}	UE	P	1070	1110	1090	1100	ns
	t _{PLZ}	-	В	530	560	560	560	
	t _{rA}	A Ports	Rise Time	4.7	4.2	3.5	3.0	ns
	t _{fA}	A Ports	Fall Time	2.6	2.1	2.6	4.1	ns
t _{rB}		B Ports	Rise Time	3.4	2.3	1.9	1.7	ns
t _{fB}		B Ports Fall Time		2.4	1.7	1.5	1.5	ns
t	t _{sk(O)}	Channel-to-0	Channel Skew	0.5	0.5	0.5	0.5	ns
	ta Rate			52	60	60	60	Mbps

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 2.5V, unless otherwise noted.)

	AMETER	FROM	то	V _{CCB} = 2.5V	$V_{CCB} = 3.3V$	$V_{CCB} = 5V$	
PAR		(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	
	t _{PLH}	A	Р	8.2	7.7	6.1	
	t _{PHL}	A	В	6.6	4.5	5.1	
t _{PD}	t _{PLH}	в	^	6.4	6.2	4.9	ns
	t _{PHL}	В	A	5.8	3.9	3.9	
	t _{PZH}		٨	15.0	15.4	18.4	
	t _{PZL}	05	A	16.5	14.2	13.9	
t _{EN}	t _{PZH}	OE	D	15.6	15.6	12.8	ns
	t _{PZL}		В	15.5	16.3	15.2	
	t _{PHZ}		•	1090	1100	1110	
	t _{PLZ}	05	A	570	570	570	
t _{DIS}	t _{PHZ}	OE	D	1100	1080	1090	ns
	t _{PLZ}		В	570	560	550	
	t _{rA}	A Ports	Rise Time	2.4	3.3	3.3	ns
	t _{fA}	A Ports	Fall Time	2.0	3.2	2.5	ns
	t _{rB}	B Ports	Rise Time	2.3	2.6	2.5	ns
	t _{fB}	B Ports	Fall Time	1.9	3.1	1.3	ns
t	t _{sk(O)}	Channel-to-0	Channel Skew	0.5	0.5	0.5	ns
	ta Rate			70	100	100	Mbps

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CCA} = 3.3V, unless otherwise noted.)$

PARA	METER	FROM	TO	V _{CCB} = 3.3V	$V_{CCB} = 5V$	UNITS
		(INPUT)	(OUTPUT)	TYP	TYP	
	t _{PLH}	- A	В	5.6	3.7	
+	t _{PHL}	~	5	4.9	3.7	20
t _{PD}	t _{PLH}	- В	А	4.3	3.6	ns
	t _{PHL}	В	A	4.2	2.6	
	t _{PZH}		•	13.3	15.0	
	t _{PZL}	OE -	A	14.4	13.1	
t _{EN}	t _{PZH}		В	14.5	13.3	ns
	t _{PZL}			13.5	15.5	
	t _{PHZ}		A -	1080	1090	
	t _{PLZ}			570	570	ns
t _{DIS}	t _{PHZ}	OE		1060	1100	
	t _{PLZ}		В	560	560	
	t _{rA}	A Ports	Rise Time	2.0	2.0	ns
	t _{fA}	A Ports	Fall Time	1.7	1.6	ns
t _{rB}		B Ports	Rise Time	2.1	1.7	ns
t _{fB}		B Ports	B Ports Fall Time		1.5	ns
t _{SK(O)}		Channel-to-0	Channel Skew	0.5	0.5	ns
	a Rate			100	100	Mbps

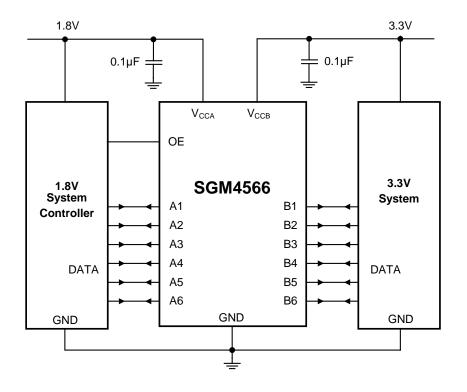
SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 5V, unless otherwise noted.)

PARA	METER	FROM	TO	$V_{CCB} = 5V$	UNITS	
		(INPUT)	(OUTPUT)	ТҮР		
	t _{PLH}	A	В	3.7		
•	t _{PHL}	A	В	3.2	20	
t _{PD}	t _{PLH}	Р	٨	2.9	ns	
	t _{PHL}	В	A	2.7		
	t _{PZH}		٨	15.6		
	t _{PZL}	OE -	A	14.3		
t _{EN}	t _{PZH}		5	15.3	ns	
	t _{PZL}		В	15.3		
	t _{PHZ}			1090		
	t _{PLZ}	05	05	A	560	
t _{DIS}	t _{PHZ}	OE	5	1090	ns	
	t _{PLZ}		В	560		
	t _{rA}	A Ports F	Rise Time	1.5	ns	
	t _{fA}	A Ports	Fall Time	1.4	ns	
	t _{rB}	B Ports F	Rise Time	2.2	ns	
	t _{fB}	B Ports	Fall Time	1.3	ns	
ts	SK(O)	Channel-to-C	hannel Skew	0.5	ns	
Data	a Rate			100	Mbps	

OPERATING CHARACTERISTICS

 $(T_A = 25^{\circ}C, unless otherwise noted.)$


			V _{CCA}									
PARAMETER		TEST CONDITIONS	1.2V	1.2V	1.5V	1.8V	2.5V	2.5V	3.3V	3.3V	5V	
			V _{CCB}									UNIT
			5V	1.8V	1.8V	1.8V	2.5V	5V	3.3V	5V	5V	
			TYP	TYP	TYP	TYP	ТҮР	ТҮР	TYP	TYP	TYP	
C _{PDA}	A Port Inputs, B Port Outputs	$C_{L} = 0,$ f = 10MHz, t_r = t_r = 1ns, OE = V _{CCA} (Outputs Enabled)	68	64	34	9	9	10	11	11	12	pF
	B Port Inputs, A Port Outputs		6	6	6	6	6	6	6	6	6	
	A Port Inputs, B Port Outputs		7	6	6	6	6	6	6	6	6	
	B Port Inputs, A Port Outputs		40	97	10	9	9	10	10	11	12	
C _{PDA}	A Port Inputs, B Port Outputs	$\begin{array}{l} C_L = 0, \\ f = 10MHz, \\ t_r = t_f = 1ns, \\ OE = GND \\ (Outputs Disabled) \end{array}$	0.003	0.002	0.004	0.003	0.004	0.003	0.003	0.003	0.003	
	B Port Inputs, A Port Outputs		0.004	0.003	0.007	0.004	0.004	0.003	0.002	0.002	0.003	pF
C _{PDB}	A Port Inputs, B Port Outputs		0.004	0.008	0.009	0.007	0.004	0.003	0.003	0.003	0.003	Ϋ́
	B Port Inputs, A Port Outputs		0.004	0.008	0.009	0.008	0.003	0.003	0.003	0.003	0.002	

SGM4566

6-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

TYPICAL APPLICATION CIRCUIT

APPLICATION INFORMATION

Applications

The SGM4566 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another.

Architecture

The SGM4566 architecture (see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a DC state, the output drivers of the SGM4566 can maintain a high or low, but are designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing the opposite direction.

The output one-shots detect rising or falling edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one-shot turns on the NMOS transistors (T2, T4) for a short duration, which speeds up the high-to-low transition. The typical output impedance during output transition is 70 Ω at V_{CCO} = 1.2V to 1.8V, 50 Ω at V_{CCO} = 1.8V to 3.3V, and 40 Ω at V_{CCO} = 3.3V to 5V.

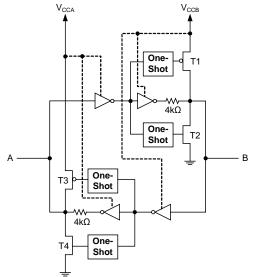
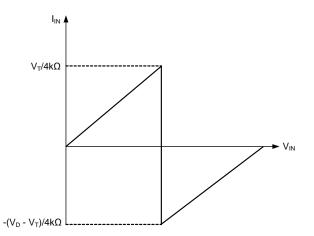



Figure 1. Architecture of SGM4566 I/O Cell

Input Driver Requirements

Typical I_{IN} vs. V_{IN} characteristics of the SGM4566 are shown in Figure 2. For proper operation, the device driving the data I/Os of the SGM4566 must have drive strength of at least ±2mA.

A. V_T is the input threshold voltage of the SGM4566 (typically $V_{CC}/2).$ B. V_D is the supply voltage of the external driver.

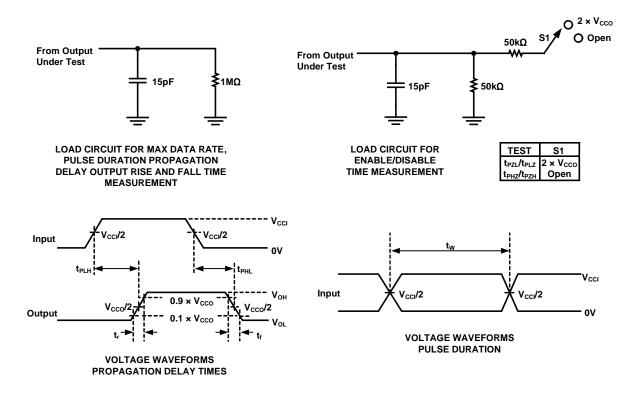
Figure 2. Typical I_{IN} vs. V_{IN} Curve

Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \ge V_{CCB}$ does not damage the device, so any power supply can be ramped up first. The SGM4566 has circuitry that disables all output ports when either V_{CC} is switched off $(V_{CCA/B} = 0V)$.

Enable and Disable

The SGM4566 has an OE input that is used to disable the device by setting OE = low, which places all I/Os in the high-impedance (Hi-Z) state. The disable time (t_{DIS}) indicates the delay between when OE goes low and when the outputs are actually disabled (Hi-Z). The enable time (t_{EN}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

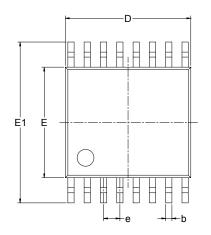

Pull-Up or Pull-Down Resistors on I/O Lines

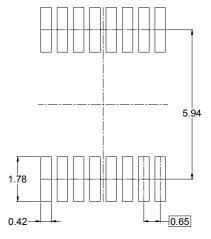
The SGM4566 is designed to drive capacitive loads of up to 70pF. The output drivers of the SGM4566 have low DC drive strength. If pull-up or pull-down resistors are connected externally to the data I/Os, their values must be kept higher than $50k\Omega$ to ensure that they do not contend with the output drivers of the SGM4566.

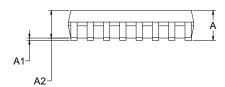
For the same reason, the SGM4566 should not be used in applications such as I^2C or 1-wire where an open-drain driver is connected on the bidirectional data I/O.

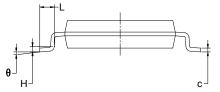
PARAMETER MEASUREMENT INFORMATION

NOTES:

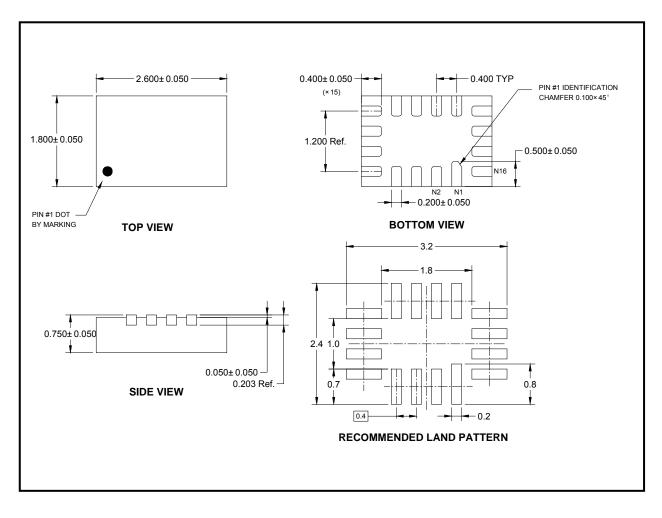

- 1. C_L includes probe and jig capacitance.
- 2. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z₀ = 50 Ω , dv/dt \geq 1V/ns.
- 3. The outputs are measured one at a time, with one transition per measurement.
- 4. t_{PLH} and t_{PHL} are the same as t_{PD} .
- 5. V_{CCI} is the V_{CC} associated with the input ports.
- 6. V_{CCO} is the V_{CC} associated with the output ports.
- 7. All parameters and waveforms are not applicable to all devices.


Figure 3. Load Circuits and Voltage Waveforms


PACKAGE OUTLINE DIMENSIONS


TSSOP-16

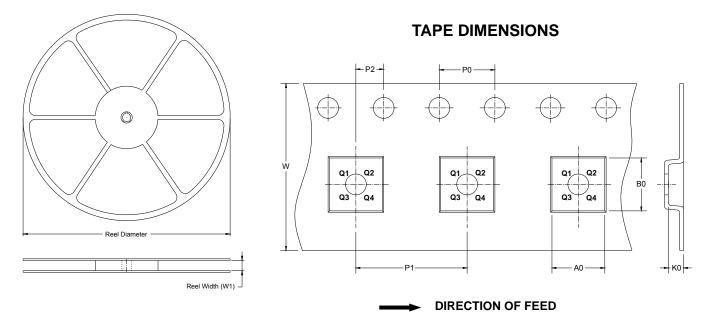
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A		1.200		0.047		
A1	0.050	0.150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
b	0.190	0.300	0.007	0.012		
С	0.090	0.200	0.004	0.008		
D	4.860	5.100	0.191	0.201		
E	4.300	4.500	0.169	0.177		
E1	6.200	6.600	0.244	0.260		
е	0.650	BSC	0.026 BSC			
L	0.500	0.700	0.02	0.028		
Н	0.25	TYP	0.01 TYP			
θ	1°	7°	1°	7°		

PACKAGE OUTLINE DIMENSIONS

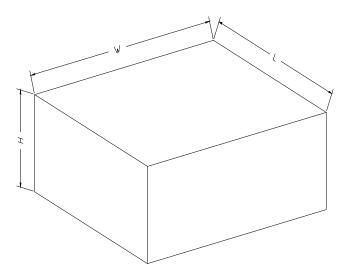
TQFN-2.6×1.8-16L



NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13″	12.4	6.9	5.6	1.2	4.0	8.0	2.0	12.0	Q1
TQFN-2.6×1.8-16L	7″	9.0	2.01	2.81	0.93	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7″	442	410	224	18	
13″	386	280	370	5	DD0002

