

# SGM7232 High Speed Differential 3:1 Analog Multiplexer

### **GENERAL DESCRIPTION**

The SGM7232 is a differential 3:1 analog multiplexer switch which operates from a single supply in the range of 2.7V to 4.3V. It can be used to multiplex between general signals and high-speed differential data signals.

The SGM7232 is available in Green UTQFN-2.2×1.4-12L package. It operates over a temperature range of -40°C to +85°C.

## **FEATURES**

- Low Distortion High Speed Analog Switches
- Power OFF Protection
- Short Protection between COM+/COM- and V<sub>cc</sub>
- Crosstalk (100kHz): -90dB
- Off-Isolation (100kHz): -90dB
- Single Supply Operation: 2.7V to 4.3V
- Internal 5MΩ Pull-Down Resistors at C0, C1 Pins
- Available in Green UTQFN-2.2×1.4-12L Package

## **APPLICATIONS**

Cellular/Mobile Phone Computer Peripherals Portable Equipments

## High Speed Differential 3:1 Analog Multiplexer

#### **PACKAGE/ORDERING INFORMATION**

| MODEL   | PIN-<br>PACKAGE   | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING | PACKAGE<br>OPTION   |  |
|---------|-------------------|-----------------------------------|--------------------|--------------------|---------------------|--|
| SGM7232 | UTQFN-2.2×1.4-12L | -40℃ to +85℃                      | SGM7232YUQO12G/TR  | СВХХ               | Tape and Reel, 3000 |  |

NOTE: XX = Date Code.

#### MARKING INFORMATION

#### **CB X X** Date code - Month ("A" = Jan. "B" = Feb. ··· "L" = Dec.) Date code - Year ("A" = 2010, "B" = 2011 ···) Chip I.D.

For example: CBDJ (2013, October)

## **ABSOLUTE MAXIMUM RATINGS**

| V <sub>CC</sub> to GND                     | 0.3V to 4.6V                |
|--------------------------------------------|-----------------------------|
| C0, C1, CH1-, CH1+, CH2-, CH2+, CH3-, CH3+ | , COM-, COM+ <sup>(1)</sup> |
|                                            | 0.3V to 4.6V                |
| DC I/O Diode Current, V <sub>IN</sub> < 0V | 50mA (MIN)                  |
| Continuous Current (CH3-, CH3+)            | ±60mA                       |
| Continuous Current (CH1-, CH1+, CH2-, CH2  | +) ±40mA                    |
| Operating Temperature Range                | 40°C to +85°C               |
| Junction Temperature                       | 150°C                       |
| Storage Temperature Range                  | 65°C to +150°C              |
| Lead Temperature (Soldering, 10s)          | 260°C                       |
| ESD Susceptibility                         |                             |
| HBM                                        | 8000V                       |
| MM                                         | 400V                        |

#### NOTES:

1. Signals on C0, C1, CH or COM exceeding GND will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.



### PIN CONFIGURATION (TOP VIEW)



NOTE:

SGM7232 switches shown for C1 = Logic "1" and C0 = Logic "1". 5MΩ pull-down resistors on C1 and C0 are not shown.

### **PIN DESCRIPTION**

| PIN | NAME            | FUNCTION                |  |  |
|-----|-----------------|-------------------------|--|--|
| 1   | CH2+            | CH2 Differential Input. |  |  |
| 2   | CH3-            | CH3 Differential Input. |  |  |
| 3   | CH3+            | CH3 Differential Input. |  |  |
| 4   | CH1-            | CH1 Differential Input. |  |  |
| 5   | CH1+            | CH1 Differential Input. |  |  |
| 6   | GND             | Ground Connection.      |  |  |
| 7   | COM+            | Common Pin of Mux.      |  |  |
| 8   | COM-            | Common Pin of Mux.      |  |  |
| 9   | C1              | Digital Control Input.  |  |  |
| 10  | C0              | Digital Control Input.  |  |  |
| 11  | V <sub>cc</sub> | Power Supply.           |  |  |
| 12  | CH2-            | CH2 Differential Input. |  |  |

#### **FUNCTION TABLE**

| C1 | C0 | CH1 | CH2 | CH3 |
|----|----|-----|-----|-----|
| 0  | 0  | OFF | OFF | OFF |
| 0  | 1  | ON  | OFF | OFF |
| 1  | 0  | OFF | ON  | OFF |
| 1  | 1  | OFF | OFF | ON  |

C0, C1: Logic "0" when  $\leq$  0.3V or float; Logic "1" when  $\geq$  1.4V with V<sub>CC</sub> in the range of 2.7V to 4.3V.



# High Speed Differential 3:1 Analog Multiplexer

## **BLOCK DIAGRAM**





### **High Speed Differential** 3:1 Analog Multiplexer

# **ELECTRICAL CHARACTERISTICS**

(V<sub>CC</sub> = 2.7V to 4.3V, GND = 0V, Full = -40°C to +85°C. Typical values are at  $T_A$  = +25°C, unless otherwise noted.)

| PARAMETER                       | SYMBOL                            | CONDITIONS                                                                   |                                                                            |       | MIN | TYP | MAX             | UNITS |  |
|---------------------------------|-----------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------|-----|-----|-----------------|-------|--|
| ANALOG SWITCH                   |                                   |                                                                              |                                                                            |       |     |     |                 |       |  |
| Analog Signal Range             | VANALOG                           |                                                                              |                                                                            | Full  | 0   |     | V <sub>CC</sub> | V     |  |
|                                 |                                   |                                                                              | CH3 selected, Test Circuit 1                                               | +25℃  |     | 4   | 5               | Ω     |  |
| On Desistance                   |                                   | V <sub>CC</sub> = 3.0V,<br>I <sub>COM</sub> = 8mA,<br>V <sub>CH</sub> = 1.0V |                                                                            | Full  |     |     | 5.5             |       |  |
| On-Resistance                   | R <sub>ON</sub>                   |                                                                              |                                                                            | +25°C |     | 9   | 11              |       |  |
|                                 |                                   |                                                                              | CHT of CH2 selected, Test Circuit 2                                        | Full  |     |     | 12              |       |  |
|                                 |                                   | V <sub>CC</sub> = 3.0V,                                                      |                                                                            | +25°C |     | 0.1 | 0.7             | Ω     |  |
| On-Resistance Match             |                                   |                                                                              |                                                                            | Full  |     |     | 0.8             |       |  |
| Between Channels                | ΔRON                              | $V_{CH} = 0.0V$                                                              |                                                                            | +25°C |     | 0.2 | 1.1             |       |  |
|                                 |                                   |                                                                              |                                                                            | Full  |     |     | 1.2             |       |  |
|                                 |                                   |                                                                              | CU2 colocted                                                               | +25°C |     | 0.5 | 1               |       |  |
| On Desistance Flatness          |                                   | $V_{\rm CC} = 3.0 V,$                                                        |                                                                            | Full  |     |     | 1.2             |       |  |
| On-Resistance Flatness          | RFLAT(ON)                         | $V_{CH} = 0V$ to 1.0V                                                        |                                                                            | +25°C |     | 1.3 | 2.2             | Ω     |  |
|                                 |                                   |                                                                              | CHT of CH2 selected                                                        | Full  |     |     | 2.5             |       |  |
| OFF Leakage Current             | I <sub>CH(OFF)</sub>              | $V_{CC} = 3.6V, V_{C0} = V_{C1}$<br>$V_{COM} = 0.3V/3.3V$                    | = 0V, V <sub>CH</sub> = 3.3V/0.3V,                                         | Full  |     |     | 1               | μA    |  |
| ON Leakage Current              | I <sub>CH(ON)</sub>               | $V_{CC}$ = 3.6V, CH1, CH<br>$V_{COM}$ = Float                                | 2 or CH3 selected, $V_{CH}$ = 3.3V/0.3V,                                   | Full  |     |     | 1               | μA    |  |
| DIGITAL INPUTS                  |                                   |                                                                              |                                                                            |       |     | •   | •               |       |  |
| C0, C1 Voltage Low              | $V_{C0L}, V_{C1L}$                | $V_{CC}$ = 2.7V to 4.3V                                                      |                                                                            | Full  |     |     | 0.3             | V     |  |
| C0, C1 Voltage High             | $V_{C0H}, V_{C1H}$                | V <sub>CC</sub> = 2.7V to 4.3V                                               |                                                                            | Full  | 1.4 |     |                 | V     |  |
| C0, C1 Pull-Down Resistor       | R <sub>C0</sub> , R <sub>C1</sub> | $V_{CC}$ = 3.6V, $V_{C0}$ = $V_{C1}$<br>pin and calculate resi               | = 3.6V, measure current into C0 or C1 stance value                         | +25°C |     | 5   |                 | MΩ    |  |
| DYNAMIC CHARACTERIST            | TICS                              |                                                                              |                                                                            |       |     |     |                 |       |  |
| Turn-On Time                    | t <sub>on</sub>                   | $V_{CC}$ = 3.0V, $V_{CH}$ = $V_{CC}$                                         | <sub>C</sub> , $R_L = 50\Omega$ , $C_L = 10pF$ , Test Circuit 3            | +25°C |     | 90  |                 | ns    |  |
| Turn-Off Time                   | t <sub>OFF</sub>                  | $V_{CC}$ = 3.0V, $V_{CH}$ = $V_{CC}$                                         | <sub>C</sub> , $R_L = 50\Omega$ , $C_L = 10pF$ , Test Circuit 3            | +25°C |     | 60  |                 | ns    |  |
| Break-Before-Make Time<br>Delay | t <sub>D</sub>                    | $V_{CC} = 3.0V, V_{CH} = V_{CC}$                                             | <sub>c</sub> , R <sub>L</sub> = 50Ω, C <sub>L</sub> = 10pF, Test Circuit 4 | +25°C |     | 45  |                 | ns    |  |
| -3dB Bandwidth                  | BW                                | Signal = 0dBm,<br>$B_{1} = 500$ , $C_{2} = 50E$                              | CH3 selected                                                               | +25°C |     | 380 |                 | MHz   |  |
|                                 | 511                               | Test Circuit 5                                                               | CH1 or CH2 selected                                                        | +25°C |     | 400 |                 | MHz   |  |
| Off Isolation                   | O <sub>ISO</sub>                  | Signal = 0dBm, $R_L$ =                                                       | 50Ω, f = 100kHz, Test Circuit 6                                            | +25°C |     | -90 |                 | dB    |  |
| Channel-to-Channel<br>Crosstalk | X <sub>TALK</sub>                 | Signal = 0dBm, $R_L$ =                                                       | 50Ω, f = 100kHz, Test Circuit 7                                            | +25°C |     | -90 |                 | dB    |  |
| Channel OFF Capacitance         | $C_{CH(OFF)}$                     | V <sub>CC</sub> = 3.0V, V <sub>C0</sub> = V <sub>C1</sub> = 0V               |                                                                            | +25°C |     | 7   |                 | pF    |  |
| COM ON Capacitance              | C <sub>COM(ON)</sub>              | $V_{CC}$ = 3.0V, CH1, CH2 or CH3 selected                                    |                                                                            |       |     | 18  |                 | pF    |  |
| POWER REQUIREMENTS              |                                   |                                                                              |                                                                            |       | -   |     |                 | _     |  |
| Power Supply Range              | V <sub>cc</sub>                   |                                                                              |                                                                            | Full  | 2.7 |     | 4.3             | V     |  |
| Positive Supply Current         | Icc                               | $V_{CC}$ = 3.6V, $V_{C0}$ , $V_{C1}$ = 0V or $V_{CC}$                        |                                                                            |       |     |     | 1               | μA    |  |
| Power OFF COM Current           | I <sub>СОМ</sub>                  | $V_{CC} = 0V, V_{C0} = V_{C1} =$                                             | Float, V <sub>COM</sub> = 4.3V                                             | Full  |     |     | 2               | μA    |  |
| Power OFF CH Current            | I <sub>CH</sub>                   | $V_{CC} = 0V, V_{C0} = V_{C1} =$                                             | Float, V <sub>CH</sub> = 4.3V                                              | Full  |     |     | 2               | μA    |  |
| Power OFF Logic Current         | I <sub>C0</sub> , I <sub>C1</sub> | $V_{CC} = 0V, V_{C0} = V_{C1} =$                                             | - 4.3V                                                                     | Full  |     |     | 2               | μA    |  |



# High Speed Differential 3:1 Analog Multiplexer

# **TYPICAL PERFORMANCE CHARACTERISTICS**









### High Speed Differential 3:1 Analog Multiplexer

## **TEST CIRCUITS**

V<sub>C0, C</sub>

V<sub>C0, C1</sub>

VINPUT

0V

opposite logic sence.

LOGIC

INPUT

SWITCH

INPUT

SWITCH

OUTPUT



#### Test Circuit 1. CH3 RON Test Circuit

50%

t<sub>on</sub>

50%

Vout

tOFF

90%



#### Test Circuit 2. CH1 and CH2 RON Test Circuit



Repeat test for all switches. CL includes fixture and stray capacitance.  $$R_{\rm L}$$ 



#### Test Circuit 3A. Address ton, toFF Measurement Points

Logic input waveform is inverted for switches that have the

#### Test Circuit 3. Switching Times

t<sub>r</sub> < 20ns

t<sub>f</sub> < 20ns

90%



**Test Circuit 4A. Measurement Points** 

Test Circuit 3B. Address ton, toff Test Circuit



Repeat test for all switches.  $\mathbf{C}_{\mathsf{L}}$  includes fixture and stray capacitance.

#### Test Circuit 4B. Test Circuit

Test Circuit 4. Break-Before-Make Time



SG Micro Corp www.sg-micro.com

7

# High Speed Differential 3:1 Analog Multiplexer

## **TEST CIRCUITS**



Test Circuit 5. -3dB Bandwidth



Test Circuit 6. Off Isolation



Test Circuit 7. Channel-to-Channel Crosstalk

## PACKAGE OUTLINE DIMENSIONS

#### UTQFN-2.2×1.4-12L



NOTE: All linear dimensions are in millimeters.



# TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

#### KEY PARAMETER LIST OF TAPE AND REEL

| Package Type      | Reel Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|---------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| UTQFN-2.2×1.4-12L | 7″            | 9.0                      | 1.6        | 2.4        | 0.7        | 4.0        | 4.0        | 2.0        | 8.0       | Q1               |



#### **CARTON BOX DIMENSIONS**



NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type   | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |
|-------------|----------------|---------------|----------------|--------------|
| 7" (Option) | 368            | 227           | 224            | 8            |
| 7″          | 442            | 410           | 224            | 18           |

