

SGM6516 8×16 Analog Crosspoint Switch

GENERAL DESCRIPTION

The SGM6516 is a low power dissipation and high reliability crosspoint switch. The device contains an 8×16 array of crosspoint switches along with a 7 to 128 line decoder and latch circuits. Any one of the 128 switches can be addressed by selecting the appropriate seven address bits. The selected switch can be turned on or off by applying a logical one or zero to the DATA input. V_{SS} is the ground reference of the digital inputs. The range of the analog signal is from V_{DD} to V_{EE}. Chip Select (CS) allows the crosspoint array to be cascaded for matrix expansion.

The SGM6516 is available in Green LQFP-10×10-44L and PLCC-44L packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Internal Control Latches and Address Decoder
- Short Set-Up and Hold Times
- Wide Operating Voltage: 4.5V to 13.2V
- 12V_{PP} Analog Signal Capability
- $R_{ON} = 40\Omega$ (TYP) at $V_{DD} = 12V$, $T_A = +25^{\circ}C$
- $\Delta R_{ON} = 3\Omega$ (TYP) at $V_{DD} = 12V$, $T_A = +25^{\circ}C$
- Full CMOS Switch for Low Distortion
- Minimum Feedthrough and Crosstalk
- Separate Analog and Digital Reference Supplies
- Low Power Consumption
- -40°C to +85°C Operating Temperature Range
- Available in Green LQFP-10×10-44L and PLCC-44L Packages

APPLICATIONS

Key Systems PBX Systems Mobile Radio Test Equipment/Instrumentation Analog/Digital Multiplexers Audio/Video Switching

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SCM6516	LQFP-10×10-44L	-40°C to +85°C	SGM6516YLFB44G/TY	SGM6516 YLFB44 XXXXX	2 Tray (320pcs)
SGM6516	PLCC-44L	-40°C to +85°C	SGM6516YPL44G	SGM6516 YPL44 XXXXX	20 Tube (500pcs)

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range

V _{DD}	0.3V to 15V
V _{SS}	0.3V to V_{DD} + 0.3V
Analog Input Voltage (VINA)	V_{EE} - 0.3V to V_{DD} + 0.3V
Digital Input Voltage (VIN)	V_{SS} - 0.3V to V_{DD} + 0.3V
Current on Any I/O Pin	±15mA
Junction Temperature	150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s).	260°C
ESD Susceptibility	
HBM	2500V
MM	400V

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range

V _{DD}	4.5V to 13.2V
V _{SS}	V_{EE} to V_{DD} - 4.5V
Analog Input Voltage (VINA)	\dots V _{EE} to V _{DD}
Digital Input Voltage (VIN)	\dots V_{EE} to V_{DD}
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

PIN		NAME		EUNOTION
LQFP-10×10-44L	PLCC-44L	NAME	1/0	FUNCTION
1, 11, 41	6, 15, 16	NC	_	No Connection.
2, 3	7, 8	X14, X15	I/O	X14 and X15 Analog Pins. These are connected to the X14 and X15 rows of the switch array.
4 - 9	9 - 14	X6 - X11	I/O	X6 - X11 Analog Pins. These are connected to the X6 - X11 rows of the switch array.
10	17	Y7	I/O	Y7 Analog Pin. This is connected to the Y7 column of the switch array.
12	18	V _{SS}	-	Digital Ground Reference.
13	19	Y6	I/O	Y6 Analog Pin. This is connected to the Y6 column of the switch array.
14	20	STROBE	I	STROBE Pin. Enables function selected by address and data. Address must be stable before STROBE goes high and DATA must be stable on the falling edge of the STROBE. Active high.
15	21	Y5	I/O	Y5 Analog Pin. This is connected to the Y5 column of the switch array.
16	22	V _{EE}	-	Negative Power Supply.
17	23	Y4	I/O	Y4 Analog Pin. This is connected to the Y4 column of the switch array.
18, 19	24, 25	AX1, AX2	I	X1 and X2 Address Line Pins.
20, 21	26, 27	AY0, AY1	I	Y0 and Y1 Address Line Pins.
22, 23, 33	28, 29, 38	NC	-	No Connection.
24, 25	30, 31	X13, X12	I/O	X13 and X12 Analog Pins. These are connected to the X13 and X12 rows of the switch array.
26 - 31	32 - 37	X5 - X0	I/O	X5 - X0 Analog Pins. These are connected to the X5 - X0 rows of the switch array.
32	39	Y0	I/O	Y0 Analog Pin. This is connected to the Y0 column of the switch array.
34	40	CS	Ι	Chip Select Pin. This is used to select the device. Active high.
35	41	Y1	I/O	Y1 Analog Pin. This is connected to the Y1 column of the switch array.
36	42	DATA	Ι	DATA Pin. A logic high input will turn on the selected switch and a logic low will turn off the selected switch. Active high.
37	43	Y2	I/O	Y2 Analog Pin. This is connected to the Y2 column of the switch array.
38	44	V _{DD}	-	Positive Power Supply.
39	1	Y3	I/O	Y3 Analog Pin. This is connected to the Y3 column of the switch array.
40	2	AY2	I	Y2 Address Line Pin.
42	3	RESET	I	Master RESET Pin. This is used to turn off all switches regardless of the condition of CS. Active high.
43, 44	4, 5	AX3, AX0	1	X3 and X0 Address Line Pins.

ELECTRICAL CHARACTERISTICS

DADAMETED		SYMBOL				MIN	TVD	MAY	LINITS
PARAMETER 31		STWIDOL		SNDITIONS		IVIIIN	116	IVIAA	UNITS
(Voltages are r	eferenced to V	.s _{EE} = 0V, V _{DD}	= 12V, Full = -40°C	to +85°C, typical values are	e at +25°C,	unless othe	rwise note	ed.)	
Quiescent Supply Current			All digital inputs a	at $V_{IN} = V_{SS}$ or V_{DD}	Full		120	240	μA
		I _{DD}	All digital inputs a V _{SS} = 7.0V	at V_{IN} = 2.4V + V_{SS} ,	Full		250	2500	μA
			All digital inputs a	at V _{IN} = 3.4V	Full		120	280	μA
Off-State Leak	age Current	I _{OFF}	I V _{Xi} - V _{Yj} I = V _{DD} -	V _{EE} , Test Circuit 1	Full		0.01	2	μA
Input Logic "0"	Level	VIL	V _{SS} = 7.5V, V _{EE} =	0V	Full			0.5 + V _{SS}	V
		.,		V _{SS} = 6.5V	Full	2.2 + V _{SS}			
Input Logic "1"	Level	VIH	$V_{EE} = 0V$	V _{SS} = 0V	Full	2.3			V
Input Leakage	(Digital Pins)	I _{LEAK}	All digital inputs a	at V _{IN} = V _{SS} or V _{DD}	Full		2.5	8.5	μA
DC Electrical	Characteristic	s - Switch R	esistance		1				
$(V_{DC} $ is the extended	rnal DC offset	voltage appli	ed at the analog I/C) pins. Full = -40°C to +85°C	, typical va	alues are at -	+25℃, un	less otherwis	se noted.)
	1/-121/				+25°C		40	65	
On-State Resistance $V_{DD} = 12V$	V _{DD} - 12V	= 12V			Full			85	
		V _{DD} = 10V R _{ON}	$V_{SS} = V_{FF} = 0V, V$	+25°C		45	70	Ω	
	$V_{DD} = 10V$		$ V_{Xi} - V_{Yj} = 0.4V$	Full			95		
				+25°C		115	175]	
	$V_{DD} = 5V$			Full			195		
Difference in On-State			V _{DD} = 12V, V _{SS} =	$V_{FF} = 0V, V_{DC} = V_{DD}/2,$	+25°C		3	12.5	
Resistance between Two Switches		ΔR_{ON}	$I V_{Xi} - V_{Yj}I = 0.4V$, Test Circuit 2		Full			15	12
AC Electrical Characteristics		s - Crosspo	int Performance						
(Voltages are r	eferenced to V	$_{\rm DD}$ = 5V, V _{SS}	= 0V, V _{EE} = -7V, typ	pical values are at +25°C, ur	nless other	wise noted.)			
Switch I/O Cap	acitance	Cs	f = 1MHz		+25°C		65		pF
Feedthrough C	apacitance	C _F	f = 1MHz		+25°C		25		pF
-3dB Bandwidt	h	BW	Switch is "ON", $V_{INA} = 2V_{PP}$ sine wave, R _L = 1k Ω , Test Circuit 3		+25°C		45		MHz
Total Harmonic	Distortion	THD	Switch is "ON", $V_{INA} = 2V_{PP}$ sine wave, $R_L = 1k\Omega$, f = 1kHz		+25°C		0.11		%
Feedthrough Channel "OFF" (EDT = 20LOG(Vour(Vou))		FDT	All Switches "OFF $R_L = 1k\Omega$, f = 1kH	=", V _{INA} = 2V _{PP} sine wave, Iz, Test Circuit 4	+25°C		-101		dB
	x <i>m</i>			$R_L = 600\Omega$, f = 1kHz	+25°C		-101		dB
				R _L = 600Ω, f = 10kHz	+25°C		-82		dB
Crosstalk betw	een Any Two		$V_{\rm max} = 2V_{\rm pp} \sin \theta$	R _L = 600Ω, f = 20kHz	+25°C		-77		dB
Channels for S	Switches Xi -	X _{TALK}	wave,	R _L = 75Ω, f = 6MHz	+25°C		-51		dB
$(X_{TALK} = 20LOC$	G(V _{OUT} /V _{Xi}))		Test Circuit 5	R _L = 75Ω, f = 10MHz	+25°C		-47		dB
				$R_L = 1k\Omega$, f = 10kHz	+25°C		-81		dB
				R _L = 10kΩ, f = 1kHz	+25°C		-79		dB
Propagation D	Propagation Delay through t_{PS} $R_L = 1k\Omega, C_L = 50pF$)pF	+25°C		5		ns	

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS		
AC Electrical Characteristic	s - Control a	ind I/O Timings							
(Voltages are referenced to V_{DD} = 5V, V_{SS} = 0V, V_{EE} = -7V, typical figures are at +25°C, unless otherwise noted.)									
Control Input Crosstalk to Switch (for CS, DATA, STROBE, ADDRESS)	CX _{TALK}	V_{IN} = 3V square wave, R_{IN} = 1k Ω , R_{L} = 1k Ω , C_{L} = 50pF, Test Circuit 6	+25°C		840		mV _{PP}		
Digital Input Capacitance	C _{DI}	f = 1MHz	+25°C		12		pF		
Switching Frequency	f _o		+25°C		5		MHz		
STROBE to Switch Status Delay	ts	$R_L = 1k\Omega$, $C_L = 50pF$, Test Circuit 7	+25°C		30		ns		
DATA to Switch Status Delay	t _D	$R_L = 1k\Omega$, $C_L = 50pF$, Test Circuit 7	+25°C		32		ns		
RESET to Switch Status Delay	t _R	R_L = 1k Ω , C_L = 50pF, Test Circuit 7	+25°C		33		ns		
Setup Time DATA to STROBE	t _{DS}	$R_L = 1k\Omega, C_L = 50pF$	+25°C		100		ns		
Hold Time DATA to STROBE	t _{DH}	$R_L = 1k\Omega, C_L = 50pF$	+25°C		100		ns		
Setup Time Address to STROBE	t _{AS}	$R_L = 1k\Omega, C_L = 50pF$	+25°C		100		ns		
Hold Time Address to STROBE	t _{AH}	$R_L = 1k\Omega, C_L = 50pF$	+25°C		100		ns		
Setup Time CS to STROBE	t _{css}	$R_L = 1k\Omega, C_L = 50pF$	+25°C		100		ns		
Hold Time CS to STROBE	t _{CSH}	$R_L = 1k\Omega, C_L = 50pF$	+25°C		100		ns		
STROBE Pulse Width	t _{SPW}	$R_L = 1k\Omega, C_L = 50pF$	+25°C		100		ns		
RESET Pulse Width	t _{RPW}	$R_L = 1k\Omega$, $C_L = 50pF$	+25°C		100		ns		

TIMING DIAGRAM

rigure i. Control Memory rinning Diagram
--

Table 1. Address Decode Truth Table

AX0	AX1	AX2	AX3	AY0	AY1	AY2	Connection
0	0	0	0	0	0	0	X0-Y0
1	0	0	0	0	0	0	X1-Y0
0	1	0	0	0	0	0	X2-Y0
1	1	0	0	0	0	0	X3-Y0
0	0	1	0	0	0	0	X4-Y0
1	0	1	0	0	0	0	X5-Y0
0	1	1	0	0	0	0	X12-Y0
1	1	1	0	0	0	0	X13-Y0
0	0	0	1	0	0	0	X6-Y0
1	0	0	1	0	0	0	X7-Y0
0	1	0	1	0	0	0	X8-Y0
1	1	0	1	0	0	0	X9-Y0
0	0	1	1	0	0	0	X10-Y0
1	0	1	1	0	0	0	X11-Y0
0	1	1	1	0	0	0	X14-Y0
1	1	1	1	0	0	0	X15-Y0
0	0	0	0	1	0	0	X0-Y1
\downarrow	$\downarrow \downarrow$						
1	1	1	1	1	0	0	X15-Y1
0	0	0	0	0	1	0	X0-Y2
\downarrow	\downarrow	Ļ	\downarrow	\downarrow	\downarrow	\downarrow	$\downarrow \downarrow$
1	1	1	1	0	1	0	X15-Y2
0	0	0	0	1	1	0	X0-Y3
\downarrow	$\downarrow \downarrow$						
1	1	1	1	1	1	0	X15-Y3
0	0	0	0	0	0	1	X0-Y4
\downarrow	\downarrow	Ļ	\downarrow	\downarrow	\downarrow	\downarrow	$\downarrow \downarrow$
1	1	1	1	0	0	1	X15-Y4
0	0	0	0	1	0	1	X0-Y5
\downarrow	\downarrow	Ļ	\downarrow	\downarrow	\downarrow	\downarrow	$\downarrow \downarrow$
1	1	1	1	1	0	1	X15-Y5
0	0	0	0	0	1	1	X0-Y6
\downarrow	$\downarrow \downarrow$						
1	1	1	1	0	1	1	X15-Y6
0	0	0	0	1	1	1	X0-Y7
\downarrow	$\downarrow \downarrow$						
1	1	1	1	1	1	1	X15-Y7

TEST CIRCUITS

Test Circuit 2. Ron/ARon Measurement

TEST CIRCUITS

Test Circuit 7. Control Memory Timing Measurements

NOTE:

All Xi and Yj analog I/O pins can be interchanged for all measurements.

FUNCTIONAL BLOCK DIAGRAM

DETAILED DESCRIPTION

Functional Description

The SGM6516 is an analog switch matrix with an array size of 8×16. The switch array is arranged such that there are 8 columns by 16 rows. The columns are referred to as the Y inputs/outputs and the rows are the X inputs/outputs. The crosspoint analog switch array will interconnect any X I/O with any Y I/O when turned on and provide a high degree of isolation when turned off. The control memory consists of a 128 bit write-only RAM in which the bits are selected by the address inputs (AY0-AY2, AX0-AX3). Data is presented to the memory on the DATA input. Data is asynchronously written into memory whenever both the CS (Chip Select) and STROBE inputs are high and is latched on the falling edge of STROBE. A logical "1" written into a memory cell turns the corresponding crosspoint switch on and a logical "0" turns the crosspoint switch off. Only crosspoint switches corresponding to the the addressed memory location are altered when data is written into memory. The remaining switches retain their previous states. Any combination of X and Y inputs/outputs can be interconnected by establishing appropriate patterns in the control memory. A logical "1" on the RESET input will asynchronously return all memory locations to logical "0" turning off all crosspoint

switches regardless of whether CS is high or low. Two voltage reference pins (V_{SS} and V_{EE}) are provided for the SGM6516 to enable switching of negative analog signals. The range for digital signals is from V_{DD} to V_{SS} while the range for analog signals is from V_{DD} to V_{EE}. V_{SS} and V_{EE} pins can be tied together if a single voltage reference is needed.

Address Decode

The seven address inputs along with the STROBE and CS (Chip Select) are logically ANDed to form an enable signal for the resettable transparent latches. The DATA input is buffered and is used as the input to all latches. To write to a location, RESET must be low and CS must go high while the address and data are set up. Then the STROBE input is set high and then low causing the data to be latched. The data can be changed while STROBE is high, however, the corresponding switch will turn on and off in accordance with the DATA input. DATA must be stable on the falling edge of STROBE in order for correct data to be written to the latch.

APPLICATION INFORMATION

Figure 2 shows a typical application circuit of a video surveillance system using analog crosspoint switches which allow multiple video sources to be switched to multiple output devices, e.g., video monitor, video recorder, etc.

Figure 3 illustrates the major components of a video surveillance system. In the center is the SGM6516, an 8×16 analog crosspoint IC. On the left are 16 video input buffers, such as SGM9119, SGM9124, SGM9125,

SGM9126, etc. On the right hand side are 8 video output buffers (SGM9124) and each buffer is capable of driving a 75Ω video load directly. BNC connectors are provided for all video inputs and video outputs.

An FT245R USB FIFO from Future Technology Devices International (FTDI) provides a standard USB interface for a PC. Through this USB connection the PC controls the switching of the video signals.

Figure 2. Typical Video Surveillance System

Figure 3. Functional Block Diagram for an 8×16 Video Surveillance System Using SGM6516

PACKAGE OUTLINE DIMENSIONS

LQFP-10×10-44L

TOP VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

	Dimensions In Millimeters								
Symbol	Dir	nensions in willimete	ers						
	MIN	MOD	MAX						
А			1.60						
A1	0.05		0.15						
A2	1.35	1.40	1.45						
A3	0.59	0.64	0.69						
b	0.31		0.44						
С	0.13		0.18						
D	11.80	12.00	12.20						
D1	9.90	10.00	10.10						
E	11.80	12.00	12.20						
E1	9.90	10.00	10.10						
е		0.80 BSC							
L	0.45	0.60	0.75						
θ	0°	3.5°	7°						

PACKAGE OUTLINE DIMENSIONS

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	4.19	4.57	0.165	0.180	
A1	0.51	MIN	0.020) MIN	
A2	2.29	3.05	0.090	0.120	
A3	1.07	1.42	0.042	0.056	
b	0.33	0.53	0.013	0.021	
b1	0.66	0.81	0.026	0.032	
D	17.40	17.65	0.685	0.695	
D1	16.41	16.56	0.646	0.652	
E	17.40	17.65	0.685	0.695	
E1	16.41	16.56	0.646	0.652	
E2	14.99	16.00	0.590	0.630	
е	1.27	TYP	0.050 TYP		
L	1.07	1.22	0.042	0.048	

PACKAGE INFORMATION

TRAY INFORMATION

DETAIL A

Pin 1 is closest to the chamfered corner of the tray.

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TRAY

Package Type	A (mm)	B (mm)	X (mm)	Y (mm)	L (mm)	W (mm)	H (mm)	Devices/Tray
LQFP-10×10-44L	13.10	13.00	15.20	15.70	322.6	135.9	7.6	160

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Packing Type	Length (mm)	Width (mm)	Height (mm)	Tray/Inner Box	Inner Box/Carton	
Tray	560	375	180	2	6	00004

