## (I) aic

## AIC811/AIC812

## **Reset Circuits with Manual Reset Input**

### **FEATURES**

- Ultra Low Supply Current 1µA(typ.)
- Guaranteed Reset Valid to Vcc=0.9V
- Available in two Output Types: Push-Pull Active Low (AIC811), Push-Pull Active High (AIC812)
- 140ms Min. Power-On Reset Pulse Width
- Internally Fixed Threshold 2.3V, 2.6V, 2.9V, 3.1V, 4.0V, 4.4V, and 4.6V
- Tight Voltage Threshold Tolerance: 1.5%
- Low profile Package: SOT-23-5

### APPLICATIONS

- Notebook Computers
- Digital Still Cameras
- PDAs
- Critical Microprocessor Monitoring

### DESCRIPTION

AIC811/AIC812 are low-power microprocessor ( $\mu$ P) supervisory circuits used to monitor power supplies in  $\mu$ P and digital systems. They provide applications with benefits of circuit reliability and low cost by eliminating external components. AIC811/AIC812 also offer a manual reset input.

These devices perform as valid singles in applications with Vcc ranging from 6.0V down to 0.9V. The reset signal lasts for a minimum period of 140ms whenever VCC supply voltage falls below preset threshold. Both AIC811 and AIC812 were designed with a reset comparator to help identify invalid signals, which last less than 140ms. The only difference between them is that they have an active-low RESET output and active-high RESET output, respectively.

Low supply current  $(1\mu A)$  makes AIC811/AIC812 ideal for portable equipment. The devices are available in SOT-23-5 package.

## **TYPICAL APPLICATION CIRCUIT**





#### ORDERING INFORMATION

aic



(Additional voltage versions with a unit of 0.1V within the voltage range from 1.5V to 5.5V for this product line may be available on demand with prior consultation with AIC.)

Example: AIC811-31CVTR
→ 3.1V version, in SOT-23-5 Package & Tape & Reel Packing Type
AIC811-31PVTR
→ 3.1V version, in Lead Free SOT-23-5 Package & Tape & Reel Packing Type

#### SOT-23-5 Marking

| Part No.    | Marking |
|-------------|---------|
| AIC811-23CV | BQ23    |
| AIC811-26CV | BQ26    |
| AIC811-29CV | BQ29    |
| AIC811-31CV | BQ31    |
| AIC811-40CV | BQ40    |
| AIC811-44CV | BQ44    |
| AIC811-46CV | BQ46    |

| Part No.    | Marking |
|-------------|---------|
| AIC812-23CV | BR23    |
| AIC812-26CV | BR26    |
| AIC812-29CV | BR29    |
| AIC812-31CV | BR31    |
| AIC812-40CV | BR40    |
| AIC812-44CV | BR44    |
| AIC812-46CV | BR46    |

## AIC811/AIC812



| Part No.    | Marking |
|-------------|---------|
| AIC811-23PV | BQ23P   |
| AIC811-26PV | BQ26P   |
| AIC811-29PV | BQ29P   |
| AIC811-31PV | BQ31P   |
| AIC811-40PV | BQ40P   |
| AIC811-44PV | BQ44P   |
| AIC811-46PV | BQ46P   |

| Part No.    | Marking |
|-------------|---------|
| AIC812-23PV | BR23P   |
| AIC812-26PV | BR26P   |
| AIC812-29PV | BR29P   |
| AIC812-31PV | BR31P   |
| AIC812-40PV | BR40P   |
| AIC812-44PV | BR44P   |
| AIC812-46PV | BR46P   |
|             | BILLIO  |

## ABSOLUTE MAXIMUM RATINGS

| V <sub>cc</sub>                                       | -0.3V ~6.5V    |
|-------------------------------------------------------|----------------|
|                                                       |                |
| Input Current (V <sub>CC</sub> , MR )                 |                |
| Output Current (RESET or RESET)                       |                |
| Continuous Power Dissipation ( $T_A = +70^{\circ}C$ ) | 320mW          |
| Operating Junction Temperature Range                  | -40°C ~ 85°C   |
| Junction Temperature                                  | 125°C          |
| Storage Temperature Range                             | - 65°C ~ 150°C |
| Lead Temperature (Soldering) 10 sec                   | 260°C          |

Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

## **TEST CIRCUIT**



# (I) aic

### **ELECTRICAL CHARACTERISTICS**

#### (Typical values are at $T_A=25^{\circ}C$ , unless otherwise specified) (Note 1)

| PARAMETER                     | SYMBOL          | TEST CONDITIONS                                                                       |                                 | MIN.               | TYP.         | MAX.   | UNIT |  |
|-------------------------------|-----------------|---------------------------------------------------------------------------------------|---------------------------------|--------------------|--------------|--------|------|--|
| Operating Voltage Range       | V <sub>CC</sub> |                                                                                       |                                 | 0.9                |              | 6      | V    |  |
| Supply Current                | Icc             | V <sub>cc</sub> = V <sub>TH</sub> +0.1V                                               |                                 |                    | 1            | 3      | μA   |  |
|                               |                 | AIC811-23                                                                             | T <sub>A</sub> =+25°C           | 2.265              | 2.3          | 2.335  |      |  |
|                               |                 | AIC011-23                                                                             | T <sub>A</sub> = -40°C to +85°C | 2.254              |              | 2.346  |      |  |
|                               |                 | AIC811-26                                                                             | T <sub>A</sub> =+25°C           | 2.561              | 2.6          | 2.639  |      |  |
|                               |                 |                                                                                       | T <sub>A</sub> = -40°C to +85°C | 2.548              |              | 2.652  |      |  |
|                               |                 | AIC811-29                                                                             | T <sub>A</sub> =+25°C           | 2.857              | 2.9          | 2.944  |      |  |
|                               |                 | AIC011-29                                                                             | T <sub>A</sub> = -40°C to +85°C | 2.842              |              | 2.958  |      |  |
| Reset Threshold               | \/              | AIC811-31                                                                             | T <sub>A</sub> =+25°C           | 3.054              | 3.1          | 3.147  |      |  |
|                               | V <sub>TH</sub> | AICOTT-31                                                                             | T <sub>A</sub> = -40°C to +85°C | 3.038              |              | 3.162  |      |  |
|                               |                 | AIC811-40                                                                             | T <sub>A</sub> =+25°C           | 3.940              | 4.0          | 4.060  |      |  |
|                               |                 | AIC011-40                                                                             | T <sub>A</sub> = -40°C to +85°C | 3.920              |              | 4.080  |      |  |
|                               |                 | AIC811-44                                                                             | T <sub>A</sub> =+25°C           | 4.334              | 4.4          | 4.466  |      |  |
|                               |                 |                                                                                       | T <sub>A</sub> = -40°C to +85°C | 4.312              |              | 4.488  |      |  |
|                               |                 | AIC811-46                                                                             | T <sub>A</sub> =+25°C           | 4.531              | 4.6          | 4.669  |      |  |
|                               |                 |                                                                                       | T <sub>A</sub> =-40°C to +85°C  | 4.508              |              | 4.692  |      |  |
| $V_{CC}$ to Reset Delay       | T <sub>RD</sub> | V <sub>CC</sub> =V <sub>TH</sub> to (V <sub>TH</sub> –0.1V),<br>V <sub>TH</sub> =3.1V |                                 |                    | 20           |        | μS   |  |
|                               | -               | V <sub>cc</sub>                                                                       | T <sub>A</sub> =+25°C           | 140                | 230          | 560    |      |  |
| Reset Active Timeout Period   | T <sub>RP</sub> | = V <sub>TH(MAX)</sub>                                                                | T <sub>A</sub> = -40°C to +85°C | 100                |              | 1030   | mS   |  |
| MR to Reset Propagation Delay | T <sub>MD</sub> | Vcc=6V                                                                                |                                 |                    | 0.5          |        | μS   |  |
| MD lanut Three sheld          | VIH             |                                                                                       |                                 | $0.7V_{CC}$        |              |        | N/   |  |
| MR Input Threshold            | V <sub>IL</sub> |                                                                                       |                                 |                    | $0.25V_{CC}$ | V      |      |  |
| MR Pull-Up Resistance         |                 |                                                                                       |                                 | 10                 | 20           | 30     | KΩ   |  |
| RESET Output Voltage          | V <sub>OH</sub> | V <sub>CC</sub> =V <sub>TH</sub> +0.1V, I <sub>SOURCE</sub> =1mA                      |                                 | 0.8V <sub>CC</sub> |              |        | V    |  |
|                               | V <sub>OL</sub> | V <sub>CC</sub> =V <sub>TH</sub> - 0.1V, I <sub>SINK</sub> =1mA                       |                                 |                    |              | 0.2Vcc | v    |  |
| RESET Output Voltage          | V <sub>OH</sub> | V <sub>CC</sub> =V <sub>TH</sub> +0.1V, I <sub>SOURCE</sub> =1mA                      |                                 | $0.8V_{CC}$        |              |        | V    |  |
|                               | V <sub>OL</sub> | V <sub>CC</sub> =V <sub>TH</sub> - 0.1V, I <sub>SINK</sub> =1mA                       |                                 |                    |              | 0.2Vcc | v    |  |

Note1: Specifications are production tested at T<sub>A</sub>=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

Note2:  $\overline{\text{RESET}}$  output is for AIC811; RESET output is for AIC812.

## AIC811/AIC812

#### **TYPICAL PERFORMANCE CHARACTERISTICS**



aic.



Fig 2 Power-Down Reset Delay vs. Temperature



Fig 3 Power-Down Reset Delay vs. Temperature



Fig 5 Normalized Reset Threshold vs. Temperature



Fig 4 Power-Down Reset Delay vs. Temperature







## <u>(I)</u> aic

### BLOCK DIAGRAM



#### **PIN DESCRIPTIONS**

| GND Pin<br>RESET Pin (AIC811) | : | Ground. Active low output pin. $\overline{\text{RESET}}$ Output remains low while Vcc below reset threshold.                                                                                     |  |  |  |
|-------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| RESET Pin (AIC812)            | : | Active high output pin. RESET output remains high while Vcc below reset threshold.                                                                                                               |  |  |  |
| MR Pin                        | : | Logic low manual reset input. This active-low input has an internal $20k\Omega$ pull-up resistor. It can be driven by a TTL or CMOS, or shorted to ground with a switch. Leave open when unused. |  |  |  |
| Vcc Pin                       | : | Supply voltage.                                                                                                                                                                                  |  |  |  |

#### DETAILED DESCRIPTIONS OF TECHNICAL TERMS

#### **RESET OUTPUT**

 $\mu$  P will be activated at a valid reset state. These  $\mu$  P supervisory circuits assert reset to prevent code execution errors during power-up, power-down, or brownout conditions.

 $\overline{\text{RESET}}$  is guaranteed to be a logic low for V<sub>TH</sub>>VCC>0.9V. Once VCC exceeds the reset threshold, an internal timer keeps  $\overline{\text{RESET}}$  low for the reset timeout period; after this interval,  $\overline{\text{RESET}}$  goes high.

If a brownout condition occurs (VCC drops below the reset threshold), RESET goes low. Any time VCC goes below the reset threshold, the internal timer resets to zero, and RESET goes low. The internal timer is activated after VCC returns above the reset threshold, and RESET remains low for the reset timeout period.

The manual reset input ( $\overline{MR}$ ) can also initiate a reset. AIC812 has an active-high RESET output that is the inverse of AIC811's  $\overline{RESET}$  output.

## AIC811/AIC812

# (I) aic

#### MANUAL RESET INPUT

Many  $\mu$  P-based products require manual reset capability, allowing operators, test technicians, or external logic circuitry to initiate a reset. Logic low on  $\overline{\text{MR}}$  asserts reset. Reset will remain asserted for the Reset Active Timeout Period (t<sub>RP</sub>) after  $\overline{\text{MR}}$ returns high. This input has an internal 20K  $\Omega$ pull-up resistor, so it can be floating if it is not used.  $\overline{\text{MR}}$  can be driven with TTL or CMOS-logic levels, or with open-drain/collector outputs. Another alternative is to connect a normal switch from  $\overline{\text{MR}}$ to GND to create a manual reset function. Connecting a 0.1 $\mu$ F capacitor from  $\overline{\text{MR}}$  to ground

#### **APPLICATION INFORMATION**

#### **NEGATIVE-GOING VCC TRANSIENTS**

In addition to issuing a reset to the  $\mu$  P during power-up, power-down, and brownout conditions, AIC811 series are relatively resistant to short-duration negative-going VCC transient.

#### ENSURING A VALID RESET OUTPUT DOWN TO VCC=0

When VCC falls below 0.9V, AIC811 RESET output no longer sinks current; it becomes an open circuit. In this case, high-impedance CMOS logic inputs connecting to RESET can drift to undetermined voltages. Therefore, AIC811/2 with CMOS is perfect for most applications of VCC below 0.9V. However in applications where can provide noise immunity to prevent noise caused by long cables of  $\overline{MR}$  or noisy environment.

#### BENEFITS OF HIGHLY ACCURATE RESET THRESHOLD

AIC811/812 with specified voltage as  $5V\pm10\%$  or  $3V\pm10\%$  are ideal for systems using a  $5V\pm5\%$  or  $3V\pm5\%$  power supply. The reset is guaranteed to assert after the power supply falls out of regulation, but before power drops below the minimum specified operating voltage range of the system ICs. The pre-trimmed thresholds are reducing the range over which an undesirable reset may occur.

RESET must be valid down to 0V, adding a pull-down resistor to RESET causes any leakage currents to flow to ground, holding RESET low.

## INTERFACING TO *µ*P WITH BIDIRECTIONAL RESET PINS

 $\mu$  Ps with bidirectional reset pins can contend with AIC811/812 reset outputs. If AIC811 RESET output is asserted high and the  $\mu$  P wants to pull it low, indeterminate logic levels may occur. To correct such cases, connect a resistor between AIC811 RESET (or AIC812 RESET) output and the  $\mu$  P reset I/O. Buffer the reset output to other system components.



#### PHYSICAL DIMENSIONS (unit: mm)

#### • SOT-23-5

) aic



| S<br>Y      | SOT-25      |      |  |  |  |
|-------------|-------------|------|--|--|--|
| M           | MILLIMETERS |      |  |  |  |
| B<br>O<br>L | MIN.        | MAX. |  |  |  |
| А           | 0.95        | 1.45 |  |  |  |
| A1          | 0.05        | 0.15 |  |  |  |
| A2          | 0.90        | 1.30 |  |  |  |
| b           | 0.30        | 0.50 |  |  |  |
| С           | 0.08        | 0.22 |  |  |  |
| D           | 2.80        | 3.00 |  |  |  |
| E           | 2.60        | 3.00 |  |  |  |
| E1          | 1.50        | 1.70 |  |  |  |
| е           | 0.95 BSC    |      |  |  |  |
| e1          | 1.90 BSC    |      |  |  |  |
| L           | 0.30 0.60   |      |  |  |  |
| L1          | 0.60        | REF  |  |  |  |
| θ           | 0° 8°       |      |  |  |  |

#### Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.