

SGM48754 Quad SPST CMOS Analog Switch

GENERAL DESCRIPTION

The SGM48754 is a CMOS analog switch configured as quad SPST. This CMOS device can operate from +2.5V to +5.5V single supplies. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 1nA at +25°C.

All digital inputs can support 1.8V logic control I/O.

The SGM48754 is available in Green SOIC-14 and TSSOP-14 packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Guaranteed On-Resistance 24Ω (TYP) with +5V Supply
- Guaranteed On-Resistance Match Between Channels
- "T" Type Switch
- Low Off-Leakage Current 1nA at +25℃
- Low On-Leakage Current 1nA at +25℃
- Optimized Rise Time and Fall Time of A, B, C and D Control Pins to Reduce Clock Feedthrough Effect
- +2.5V to +5.5V Single-Supply Operation
- 1.8V Logic Compatible
- Low Distortion: 0.4% ($R_L = 600\Omega$, f = 20Hz to 20kHz)
- High Off-Isolation: -80dB ($R_L = 50\Omega$, f = 1MHz)
- -40°C to +85°C Operating Temperature Range
- Available in Green SOIC-14 and TSSOP-14 Packages

APPLICATIONS

Battery-Operated Equipment Audio and Video Signal Routing Low-Voltage Data-Acquisition Systems Communications Circuits Automotive

SGM48754

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SOM49754	SOIC-14	-40℃ to +85℃	SGM48754YS14G/TR	SGM48754YS14 XXXXX	Tape and Reel, 2500
SGM48754 -	TSSOP-14	-40℃ to +85℃	SGM48754YTS14G/TR	SGM48754 YTS14 XXXXX	Tape and Reel, 4000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Vcc to GND	0.3V to 6V
Voltage into Any Terminal ⁽¹⁾	0.3V to (V _{CC} + 0.3V)
Continuous Current into Any Termina	al±20mA
Peak Current	
(Pulsed at 1ms, 10% duty cycle)	±40mA/
Junction Temperature	150°C
Storage Temperature Range	65℃ to +150℃
Lead Temperature (Soldering, 10s)	260°C

NOTE:

1. Voltages exceeding V_{CC} or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Ran	ge	2,5V to 5.5V
		40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS (TOP VIEW)

$\langle \rangle \rangle$
Š,
\land
$\langle \cdot \rangle$
/
)

FUNCTION TABLE

SELECT INPUTS	SWITCH STATUS			
A/B/C/D	SWITCH STATUS			
High	All Switches Close			
Low	All Switches Open			

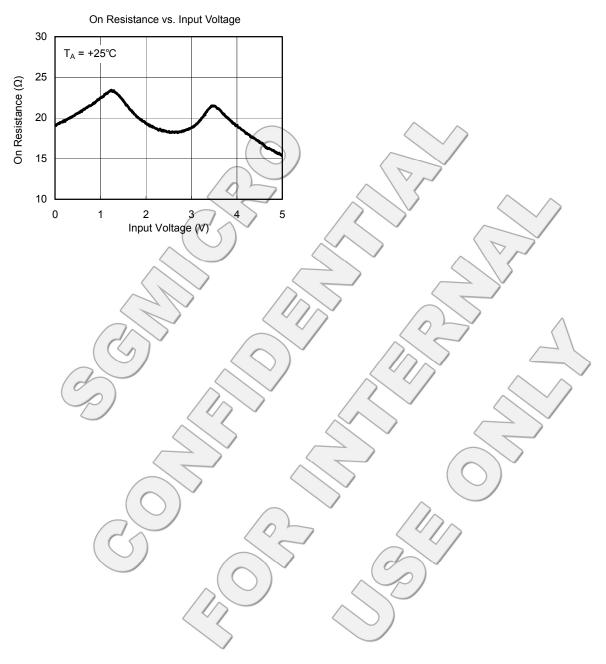
NOTE: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0V, Full = -40°C to +85°C, x = A, B, C and D switch in/out or out/in, typical values are at T_A = +25°C, unless otherwise noted.)

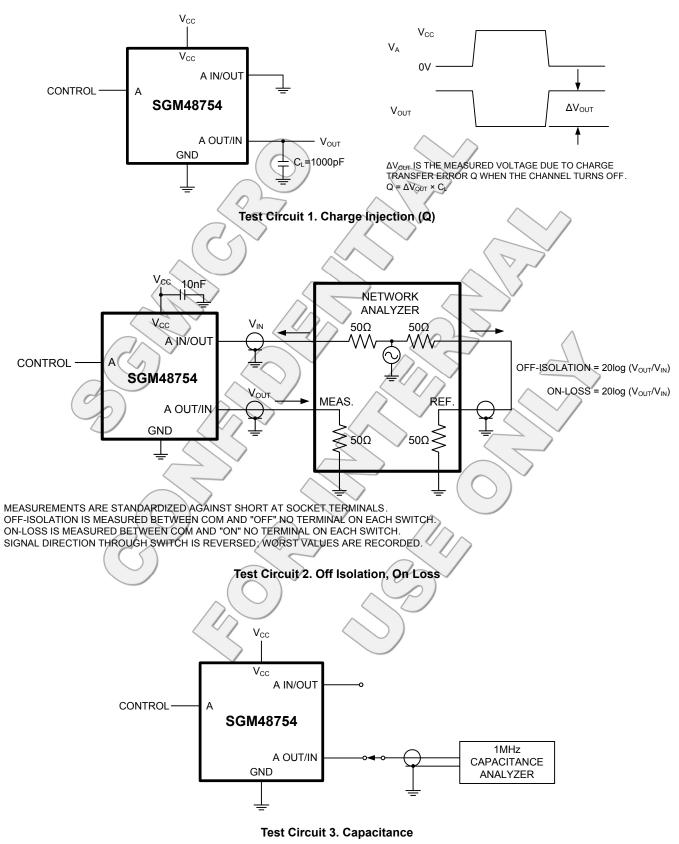
PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{X_} , V _X		Full	GND		Vcc	V
On-Resistance	R _{ON}	V _{cc} = 5.0V, I _x = 1mA	+25°C		24		Ω
	NON		Full				32
On-Resistance Match	ΔR_{ON}	V _{cc} = 5.0V, I _x = 1mA	+25℃		1		Ω
Between Channels			Full				
On-Resistance Flatness	R _{FLAT(ON)}	Vcc = 5.0V, lx = 1mA	+25°C		8		Ω
			Full		\wedge		
Off Leakage Current	IX_(OFF)	V _{CC} = 5.0V, V _X = 4.5V or 0V, V _X = 4.5V or 0V	+25°C	\searrow	/1		nA
DIGITAL I/O	(Θ)						
Logic Input Logic Threshold High	V _{AH} , V _{BH} , V _{CH} , V _{DH}		+25°C	1.7			V
Logic Input Logic Threshold Low	V _{AL} , V _{BL} , V _{CL} , V _{DL}		+25°C			0.5	V
Input-Current High	I _{AH} , I _{BH} , I _{CH,} I _{DH}	VA, VB, VC, VD = VCC	+25℃		10		nA
Input-Current Low	I _{AL} , I _{BL} , I _{CL} , I _{DL}	$V_A, V_B, V_C, V_D = 0V$	+25°C	_	10		nA
DYNAMIC CHARACTERIST	ics /			4			
A, B, C, D Rise Time	t _R		+25°C	\sum	45		ns
A, B, C, D Fall Time	t _F		+25°C		50		ns
Charge Injection	Q	$R_s = 0\Omega$, C = 1nF, $V_s = 0V$, Test Circuit 1	+25℃				рС
Off Isolation	Viso	$R_L = 50\Omega$, f = 1MHz, Test Circuit 2	+25°C	\langle	-80		dB
Input Off-Capacitance	CX_(OFF)	$V_{X_{-}} = 0V$, f = 1MHz, Test Circuit 3	+25℃				pF
Output Off-Capacitance	C _{X(OFF)}	V _X = 0V, f = 1MHz, Test Circuit 3	+25°C				pF
Output On-Capacitance	C _{X(ON)}	V _x = 0V, f = 1MHz, Test Circuit 3	+25°C				pF
-3dB Bandwidth	BW	$R_L = 50\Omega$	+25°C		180		MHz
Total Harmonic Distortion	THD	$R_{L} = 600\Omega$, $5V_{P-P}$, f = 20Hz to 20kHz	+25°C		0.4		%
POWER SUPPLY							
Power Supply Range	Vcc		Full	2.5		5.5	V
Power Supply Current	Icc	$V_{CC} = 5.0V, V_A, V_B, V_C, V_D = V_{CC} \text{ or } 0$	+25°C		0.01		μA

ELECTRICAL CHARACTERISTICS


(V_{CC} = 3.3V, Full = -40°C to +85°C, x = A, B, C and D switch in/out or out/in, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{X_} , V _X		Full	GND		Vcc	V
On-Resistance	R _{ON}	V _{CC} = 3.3V, I _X = 1mA	+25℃ Full		40		Ω
Off Leakage Current	I _{X_(OFF)}	V _X = 1V, 3V, V _X = 3V, 1V	+25°C		1		nA
Off Leakage Current	$I_{X(OFF)}$	$V_{X} = 1V, 3V, V_{X} = 3V, 1V$	+25℃		1		nA
On Leakage Current	I _{X(ON)}	Vx = 3V, 1V	+25°C		1		nA
DIGITAL I/O					\wedge		
Logic Input Logic Threshold High	V _{AH} , V _{BH} , V _{CH} , V _{DH}	\sim / \sim	+25°C	1.7			V
Logic Input Logic Threshold Low	V _{AL} , V _{BL} , V _{CL} , V _{DL}		+25℃			0.5	V
Input-Current High	I _{AH} , I _{BH} , I _{CH}	$V_A, V_B, V_C, V_D = V_{CC}$	+25°C	>	10		nA
Input-Current Low	I _{AL} , I _{BL} , I _{CL}	$V_A, V_B, V_C, V_D = 0V$	+25°C		10		nA
DYNAMIC CHARACTERISTI	CS		7		\land		
A, B, C, D Rise Time	t _R		+25°C		80		ns
A, B, C, D Fall Time	t⊨		+25°C		85		ns
-3dB Bandwidth	BW	$R_{L} = 50\Omega$	+25°C		180		MHz
Charge Injection	Q	$R_s = 0\Omega$, C = 1nF, V _s = 2.5V, Test Circuit 1	+25℃				рС
POWER SUPPLY							
Power Supply Current	Icc	$V_A, V_B, V_C, V_D = V_{CC} \text{ or } 0$	+25℃		0.01		μA
	5		\bigcirc				

TYPICAL PERFORMANCE CHARACTERISTICS


 V_{CC} = 5.0V, unless otherwise noted.

SGM48754

TEST CIRCUITS

APPLICATION INFORMATION

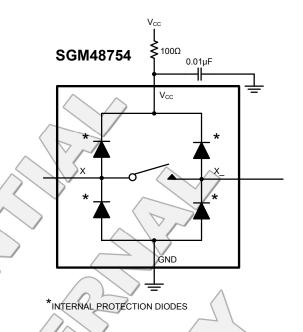
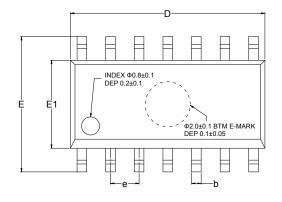
Power-Supply Considerations Overview

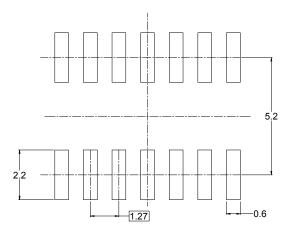
The SGM48754 construction is typical of most CMOS analog switch. It supports single power supply. V_{CC} and GND are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD protection diodes are internally connected between each analog-signal pin and both V_{CC} and GND. If any analog signal exceeds V_{CC} or GND, one of these diodes will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from V_{CC} or GND.

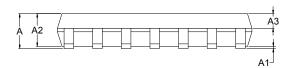
Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V_{CC} or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V_{CC} and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity.

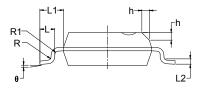
Over-Voltage Protection

Proper power-supply sequencing is recommended for the CMOS device. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V_{CC} on first, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add one 100 Ω resistor in series with the supply V_{CC} pin for over-voltage protection (Figure 1).

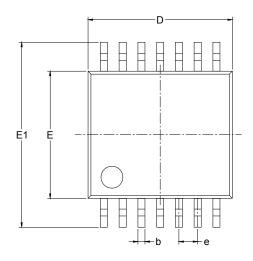



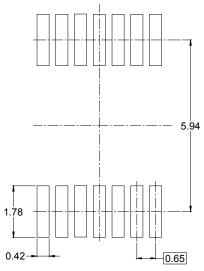

Figure 1. Over-Voltage Protection Using External Resistor

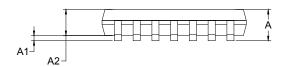

PACKAGE OUTLINE DIMENSIONS

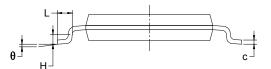

SOIC-14

RECOMMENDED LAND PATTERN (Unit: mm)

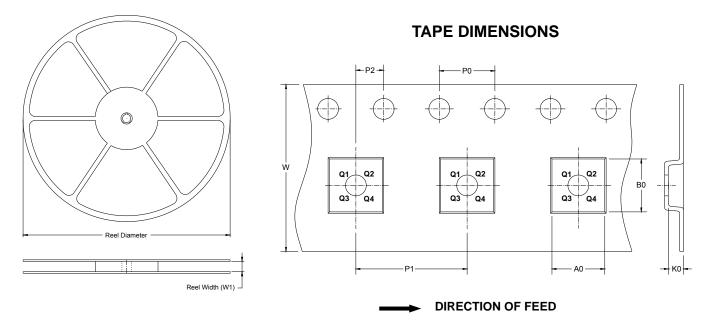



Symbol	Dimens	sions In Mill	imeters	Dimensions In Inches			
Symbol	MIN	MOD	MAX	MIN	MOD	MAX	
A	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.004		0.010	
A2	1.25		1.65	0.049		0.065	
A3	0.55		0.75	0.022		0.030	
b	0.36		0.49	0.014		0.019	
D	8.53		8.73	0.336		0.344	
E	5.80		6.20	0.228		0.244	
E1	3.80		4.00	0.150		0.157	
e	1.27 BSC				0.050 BSC		
L	0.45		0.80	0.018		0.032	
L1		1.04 REF			0.040 REF		
L2		0.25 BSC			0.01 BSC		
R	0.07			0.003			
R1	0.07			0.003			
h	0.30		0.50	0.012		0.020	
θ	0°		8°	0°		8°	


PACKAGE OUTLINE DIMENSIONS


TSSOP-14

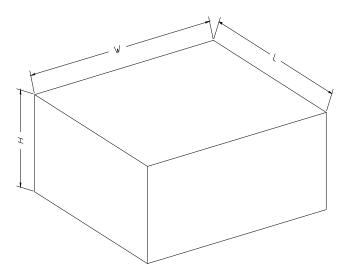
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	МАХ	
A		1.100		0.043	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	4.900	5.100	0.193	0.201	
E	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
e	0.650	BSC	0.026	BSC	
L	0.500	0.700	0.02	0.028	
Н	0.25	TYP	0.01	TYP	
θ	1°	7°	1°	7°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant	
SOIC-14	13″	16.4	6.6	9.3	2.1	4.0	8.0	2.0	16.0	Q1	
TSSOP-14	13″	12.4	6.95	5.6	1.2	4.0	8.0	2.0	12.0	Q1	DD0001

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

