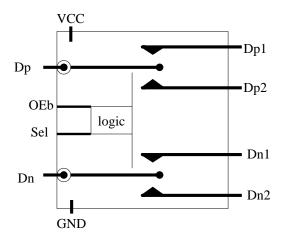

Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) DPDT Analog Switch BL1530


Description

The BL1530 is a Low-Power, Two-Port, High-Speed, USB2.0 (480Mbps) double –pole double-throw (DPDT) Analog Switch featuring an On-Resistance of 4.5 ohm at VCC=3V and a Low On Capacitance 3.7pf Typical.

The BL1530 is compatible with the requirements of USB2.0 and the wide bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to channel crosstalk also minimizes interference. Break-before-make function for both parts eliminates signal disruption during switching from preventing both switches being enabled simultaneously. The BL1530 contains special circuitry on the switch I/O pins for applications where the VCC supply is powered-off (VCC=0), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the Sel pin is lower than the supply voltage (VCC). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Pin Configuration


Features

- Wide Power Supply Range: 2.3V to 5V
- Low On Capacitance 3.7pf Typical
- Low On Resistance 4.5 Ω (typ) at 3V VDD when V_{SW} =0.4V
- High Bandwidth (-3db): >720MHz without C_L and >550MHz with $C_L=5$ pF
- Low Power Consumption: 1uA Maximum
- ESD: pass 8kV HBM test
- Over voltage tolerance (OVT) on all USB ports up to 5.25V without external components
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Operation Temperature Range: -40° C to 85° C
- UTQFN1.8×1.4-10L and MSOP10L Package

Applications

Cell phone, PDAs, Digital camera, Notebook, LCD Monitor, TV, SET-TOP BOX

Block Diagram

Function Table

OEb	Sel	Function
1	X	Disconnect
0	0	Dp, Dn=Dp1, Dn1
0	1	Dp, Dn=Dp2, Dn2

Pin Description

PIN num		Pin Name	Туре	Description	
UTQFN10L	MSOP10L	1 III Ivallic	Турс	Description	
1	2	Dp1	Input/Output	Data Port	
2	3	Dp2	Input/Output	Data Port	
3	4	Dp	Input/Output	USB Data BUS	
4	5	GND	Ground	Ground	
5	6	Dn	Input/Output	USB Data BUS	
6	7	Dn2	Input/Output	Data Port	
7	8	Dn1	Input/Output	Data Port	
8	9	OEb	Input	Switch enable	
9	10	VCC	PWR	Power Supply	
10	1	Sel	Input	Switch select	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
DC Supply Voltage	VCC	-0.5	5.5	V
DC Switch Voltage	Dpn / Dnn / Dp / Dn	-0.5	VCC+ 0.3	V
DC Input Voltage	$ m V_{Oeb}/ m V_{Sel}$	-0.5	VCC	V
Continuous Current	$I_{(Dpn/Dnn/Dp/Dn)}$	-50	+50	mA
Peak Current ⁽¹⁾	$I_{PEAK(Dpn/Dnn/Dp/Dn)}$	-100	+100	mA
Operating Temperature Range	T_{A}	-40	85	$^{\circ}$

Notes:

- (1) Pulsed at 1ms, 50% duty circle
- (2) Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ACKAGE OPTION
BL1530TQFN	UTQFN1.8×1.4- 10L	- 40 ℃ to +85 ℃	IYW ⁽¹⁾	Tape and Reel,
BL1530MSOP	MSOP10L	- 40 ℃ to +85 ℃	IIG YWW	Tape and Reel,

WHERE(1):

"IYW" IS 3 DIGITS PRODUCTION ID COLOUR: LASER MARKING

[&]quot;I" stands for the product BL1530.

[&]quot;Y" stands for the product year, for example, "1" stands for the year 2011.

[&]quot;W" stands for the product week, for example, "a" stands for the first week, "A" stands for the 27th week.

DC ELECTRICAL CHARACTERISTICS

Symbol	Conditions		Guaranteed Limit				
Symbol	Conditions	Min. Typ. (1)		Max. Unit			
Analog Switch							
$V_{Pn}/V_{Nn}/V_{p}/V_{n}$		0		VCC	V		
R _{ON}	$VCC = 3V, V_{SW} = 0.4V,$ $I_{ON} = -8mA$		4.5		Ω		
Δ R _{ON}	$VCC = 3V, V_{SW} = 0.4V,$ $I_{ON} = -8mA$		0.1		Ω		
$I_{Pn/Nn(OFF)}$	VCC= $3.6V$, V_p/V_n = $3.6/0.3V$, V_{Pn}/V_{Nn} = $0.3/3.6V$	-1		1	uA		
$I_{Pn/Nn(ON)}$	$VCC=3.6V, V_p/V_n=3.6/0.3V,$ $V_{Pn}/V_{Nn}=3.6/0.3V$	-1		1	uA		
$I_{ m OFF}$	$VCC = 0V, V_{SW} = 0V \text{ to } 3.6V,$ Vcontrol = 0 or VCC	-1		1	uA		
I_{CC}	VCC=3V, Vcontrol=0 or VCC, Iout=0			1	uA		
I_{CCT}	VCC=3.6V, Vcontrol=2.6V			4	uA		
I _{OEb /Sel}	$V_{OEb/Sel} = 0$ or VCC			1	uA		
Digital I/O							
V_{IH}	VCC = 3.0-3.6V	1.6			V		
V_{IL}	VCC = 3.0-3.6V			0.5	V		
	R _{ON} A R _{ON} I _{Pn / Nn (OFF)} I _{Pn / Nn (ON)} I _{OFF} I _{CC} I _{CCT} I _{OEb /Sel}	$\begin{array}{ c c c c }\hline V_{Pn}/V_{Nn}/V_{p}/V_{n} \\ \hline R_{ON} & VCC = 3V, V_{SW} = 0.4V, \\ I_{ON} = -8mA \\ \hline & VCC = 3V, V_{SW} = 0.4V, \\ I_{ON} = -8mA \\ \hline \\ I_{Pn}/N_{n} (OFF) & VCC = 3.6V, V_{p}/V_{n} = 3.6/0.3V, \\ V_{Pn}/V_{Nn} = 0.3/3.6V \\ \hline & VCC = 3.6V, V_{p}/V_{n} = 3.6/0.3V, \\ V_{Pn}/V_{Nn} = 3.6/0.3V, \\ V_{Pn}/V_{Nn} = 3.6/0.3V \\ \hline & VCC = 0V, V_{SW} = 0V \ to \ 3.6V, \\ V_{COntrol} = 0 \ or \ VCC \\ \hline & VCC = 3V, \\ V_{COntrol} = 0 \ or \ VCC, Iout = 0 \\ \hline & I_{CC} & VCC = 3.6V, V_{Control} = 2.6V \\ \hline & I_{OEb/Sel} & V_{OEb/Sel} = 0 \ or \ VCC \\ \hline & V_{IH} & VCC = 3.0-3.6V \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c } \hline \textbf{Symbol} & \textbf{Conditions} & \hline \textbf{Min.} \textbf{Typ.}^{(1)} \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn}/\textbf{V}_{p}/\textbf{V}_{n} & \textbf{0} \\ \hline \textbf{R}_{ON} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{SW} = 0.4\textbf{V}, \\ \textbf{I}_{ON} = -8mA & \textbf{0.1} \\ \hline \textbf{A}_{RON} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{SW} = 0.4\textbf{V}, \\ \textbf{I}_{ON} = -8mA & \textbf{0.1} \\ \hline \textbf{I}_{Pn}/\textbf{N}_{n} \text{ (OFF)} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{p}/\textbf{V}_{n} = 3.6/0.3\textbf{V}, \\ \textbf{V}_{Pn}/\textbf{V}_{Nn} = 0.3/3.6\textbf{V} & -1 \\ \hline \textbf{I}_{Pn}/\textbf{N}_{n} \text{ (ON)} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{p}/\textbf{V}_{n} = 3.6/0.3\textbf{V}, \\ \textbf{V}_{Pn}/\textbf{V}_{Nn} = 3.6/0.3\textbf{V} & -1 \\ \hline \textbf{I}_{OFF} & \textbf{VCC} = 0\textbf{V}, \textbf{V}_{SW} = 0\textbf{V} \text{ to } 3.6\textbf{V}, \\ \textbf{V}_{Control} = 0 \text{ or } \textbf{VCC} & \textbf{VCC} = 3\textbf{V}, \\ \textbf{V}_{Control} = 0 \text{ or } \textbf{VCC}, \text{ Iout} = 0 \\ \hline \textbf{I}_{CCT} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{control} = 2.6\textbf{V} \\ \hline \textbf{I}_{OEb/Sel} & \textbf{V}_{OEb/Sel} = 0 \text{ or } \textbf{VCC} \\ \hline \textbf{V}_{IH} & \textbf{VCC} = 3.0-3.6\textbf{V} & \textbf{1.6} \\ \hline \end{array}$	$ \begin{array}{ c c c c c c } \hline \textbf{Symbol} & \textbf{Conditions} & \hline \textbf{Min.} & \textbf{Typ.}^{(1)} & \textbf{Max.} \\ \hline \hline \textbf{V}_{Pn}/\textbf{V}_{Nn}/\textbf{V}_p/\textbf{V}_n & 0 & \textbf{VCC} \\ \hline \textbf{R}_{ON} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{SW} = 0.4\textbf{V}, \\ \hline \textbf{I}_{ON} = -8m\textbf{A} & 0.1 \\ \hline \hline \textbf{I}_{Pn}/\textbf{N}_n \text{ (OFF)} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_p/\textbf{V}_n = 3.6/0.3\textbf{V}, \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn} = 0.3/3.6\textbf{V} & -1 & 1 \\ \hline \textbf{I}_{Pn}/\textbf{N}_n \text{ (ON)} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_p/\textbf{V}_n = 3.6/0.3\textbf{V}, \\ \hline \textbf{V}_{Pn}/\textbf{V}_{Nn} = 3.6/0.3\textbf{V} & -1 & 1 \\ \hline \textbf{I}_{OFF} & \textbf{VCC} = 0\textbf{V}, \textbf{V}_{SW} = 0\textbf{V} \text{ to } 3.6\textbf{V}, \\ \hline \textbf{V}_{Control} = 0 \text{ or VCC} & -1 & 1 \\ \hline \textbf{I}_{CC} & \textbf{VCC} = 3\textbf{V}, \textbf{V}_{control} = 0 \text{ or VCC}, \textbf{Iout} = 0 \\ \hline \textbf{I}_{CCT} & \textbf{VCC} = 3.6\textbf{V}, \textbf{V}_{control} = 2.6\textbf{V} & 4 \\ \hline \textbf{I}_{OEb/Sel} & \textbf{V}_{OEb/Sel} = 0 \text{ or VCC} & 1 \\ \hline \textbf{I}_{C} & \textbf{V}_{CC} = 3.0-3.6\textbf{V} & 1.6 \\ \hline \textbf{I}_{OEb/Sel} & \textbf{V}_{CC} = 3.0-3.6\textbf{V} & 1.6 \\ \hline \end{array}$		

Note:

- (1) Typical characteristics are at $+25 \text{ }^{\circ}\text{C}$
- (2) Measured by the voltage drop between Dpn/Dnn and Dp/Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (Dpn/Dnn and Dp/Dn ports).
- (3) Δ $R_{ON}\!\!=R_{ON(MAX)}\!-\!R_{ON(MIN)},$ between Dp and Dn .

DYNAMIC CHARACTERISTICS

Parameter	Symbol	Conditions	Guaranteed Limit			Unit
rarameter	Symbol	Conditions	Min.	Typ. (1)	Max.	Unit
DRIVER CHARACTER	ISTICS					•
Turn-On Time	t _{ON}	VCC=3.3V, R _L =50omh,		10	30	ns
Turn-On Time		$C_L=5pF, V_{SW}=0.8V$				
Turn-Off Time	$t_{ m OFF}$	VCC=3.3V, R _L =50omh,		20	25	ns
Turn-Ori Time	WFF	$C_L=5pF, V_{SW}=0.8V$				
Break-Before-Make Time	t _{BBM}	VCC=3.3V, R _L =50omh,	2.0	3	6.5	ns
Break-Berore-Wake Time	rBBM	$C_L = 5pF, V_{SW1,2} = 0.8V$	2.0			
Propagation Dalay	too	VCC=3.3V, R _L =50omh,		0.2		ns
i Topagation Dalay	$t_{ m PD}$	C _L =5pF				113
CAPACITANCE						•
Control Capacitance	C_{IN}	VCC=0V		1.5		pF
ON Capacitance	C _{ON}	VCC = 3.3V,OE=0V,		3.7		рF
		f=240MHz				Γ-
OFF Capacitance	C_{OFF}	VCC = 3.3V, OE = 3.3V,		2.0		рF
-		f=240MHz				
APPLICATION CHARA	ACTERI	STICS				
3dB Bandwidth	$ m f_{3dB}$	$VCC = 3.3V,R_L=50omh,C_L=0pF$		720		MHz
Sab Bandwidth	13dB	$VCC = 3.3V, R_L = 50 \text{omh}, C_L = 5 \text{pF}$		550		MHz
Off Isolation ⁽²⁾	V_{Iso}	VCC = 3.3V,		-30		dB
	V ISO	R _L =50omh,f=250MHz	-30			u.D
Channel crosstalk	XTALK	VCC = 3.3V,		-35		dB
		R _L =50omh,f=250MHz				

Note:

- (1) Typical characteristics are at 25 $\ensuremath{\mathfrak{C}}$
- (2) Off Channel Isolation = $20log_{10}$ [(V_{P1\backslash P2})/V_P] or $20log_{10}$ [(V_{N1\backslash N2})/V_N]

TEST SETUP CIRCUITS

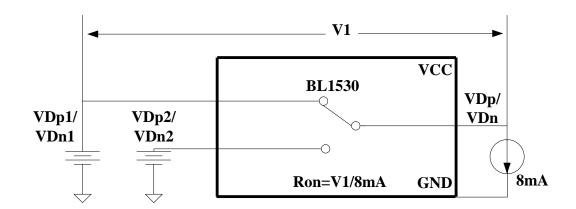


Figure 1. Test Circuit for On Resister

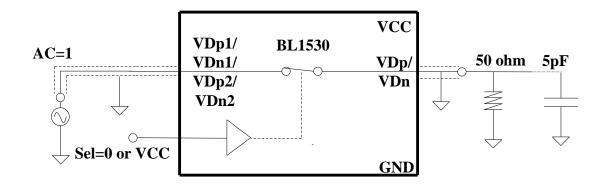


Figure 2. Test Circuit for Bandwidth

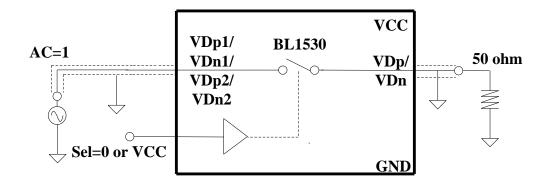
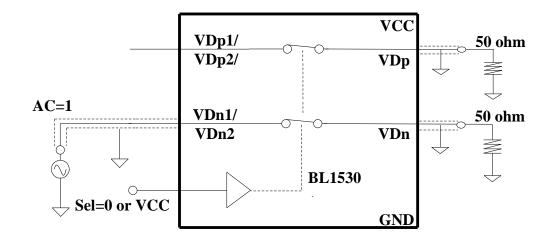
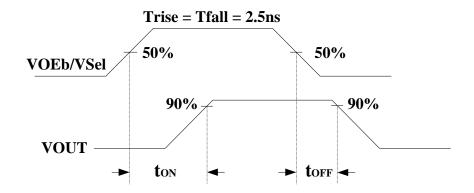
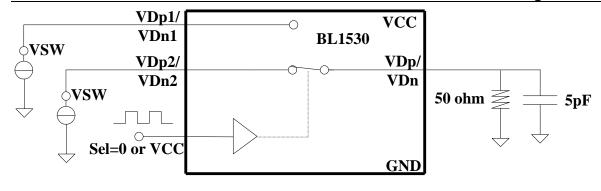
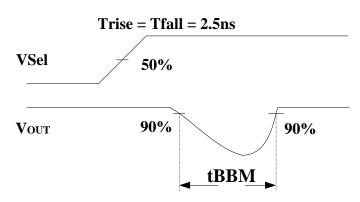
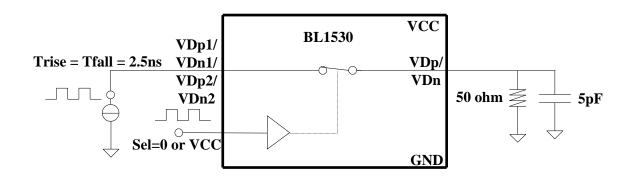


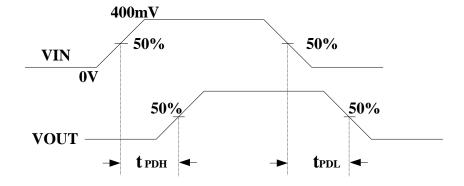
Figure 3. Test Circuit for Off Isolation




Figure 4. Test Circuit for Crosstalk




Test Circuit 5. Test Circuit for Switch Times

Test Circuit 5. Test Circuit for Break-Before-Make Time Delay, t_{BBM}

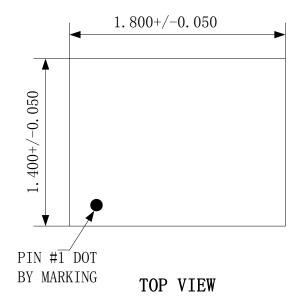
Test Circuit 6. Test Circuit for Propagation Delay, Tpd

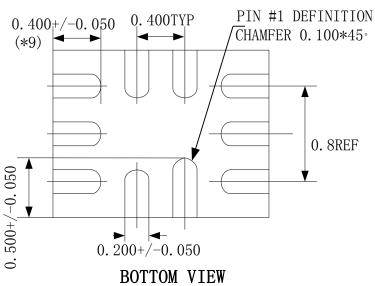
- 9 -

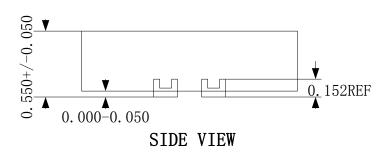
APPLICATION NOTE

Meeting USB 2.0 V_{BUS} Short Requirements

(1) Power-Off Protection

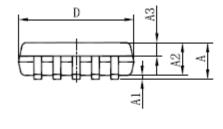

For a V_{BUS} short circuit the switch is expected to withstand such a condition for at least 24 hours. The BL1530 has the specially designed circuit which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (Dp, Dn).

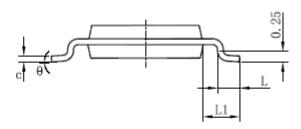

(2) Power-On Protection

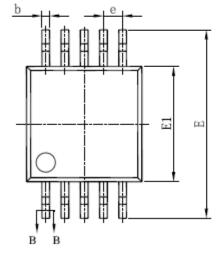

The USB 2.0 specification also notes that the USB device should be capable of withstanding a V_{BUS} short during transmission of data. This modification works by limiting current flow back into the VCC rail during the over-voltage event so current remains within the safe operating range.

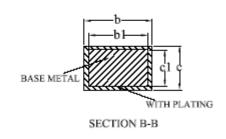
PACKAGE OUTLINE DIMENSIONS (UTQFN1.8×1.4-10L)

UTQFN1.8×1.4-10L






- 11 -


NOTE: All linear dimensions are in millimeters.

MSOP10L

SYMBOL	MILLIMETER			
SIMBOL	MIN	NOM	MAX	
A	-		1.10	
A1	0.05		0.15	
A2	0.75	0.85	0.95	
A3	0.30	0.35	0.40	
ъ	0.19	-	0.28	
b 1	0.18	0.20	0.23	
c	0.15		0.20	
c 1	0.14	0.152	0.16	
D	2.90	3.00	3.10	
E	4.70	4.90	5.10	
E1	2.90	3.00	3.10	
e	0.50BSC			
L	0.40	ı	0.70	
L1	0.95BSC			
θ	0	_	8	
L/P載体尺寸 (mil)	71*96			