2.2mA, 12MHz, Low Noise, Rail-to-Rail I/O Tiny Package, CMOS Operational Amplifier

GENERAL DESCRIPTION

The SGM8602 is a dual, low noise, low voltage and low power operational amplifier that can be designed into a wide range of applications. The SGM8602 has a high gain-bandwidth product of 12MHz, a slew rate of $9V/\mu s$ and a quiescent current of 2.2mA at 5V.

The SGM8602 is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground. The operating supply range is from 2.1V to 5.5V.

The dual SGM8602 is available in Green SOT-23-8 and TDFN-2×3-8L packages. It is specified over the extended -40°C to +125°C industrial temperature range.

APPLICATIONS

Sensors

Audio

Active Filters

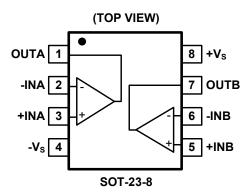
A/D Converters

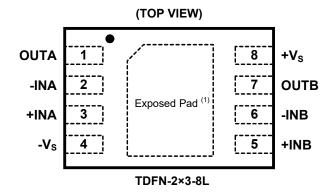
Communications

Test Equipment

Cellular and Cordless Phones

Laptops and PDAs

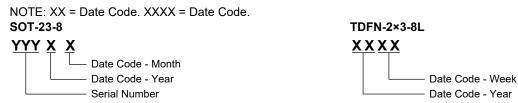

Photodiode Amplification


Battery-Powered Instrumentation

FEATURES

- Rail-to-Rail Input and Output
- 5.1mV Maximum Input Offset Voltage
- High Gain-Bandwidth Product: 12MHz
- High Slew Rate: 9V/μs
- Settling Time to 0.1% with 2V Step: 0.2µs
- Overload Recovery Time: 0.4μs
- Low Noise: 9nV/√Hz at 10kHz
- Supply Voltage Range: 2.1V to 5.5V
- Input Voltage Range: -0.1V to +5.6V with V_s = 5.5V
- Low Power: 2.2mA (TYP) Supply Current
- -40°C to +125°C Operating Temperature Range
- Available in Green SOT-23-8 and TDFN-2×3-8L Packages

PIN CONFIGURATIONS



NOTE: 1. Exposed pad can be connected to -V_S or left floating.

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
COMOCOO	SOT-23-8	-40°C to +125°C	SGM8602XN8G/TR	SUDXX	Tape and Reel, 3000
SGM8602	TDFN-2×3-8L	-40°C to +125°C	SGM8602XTDC8G/TR	8602 XXXX	Tape and Reel, 3000

MARKING INFORMATION

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage Range	
(-V _S) - 0.3	$V \text{ to } (+V_S) + 0.3V$
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	V0008
MM	400V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.1V to 5.5V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods

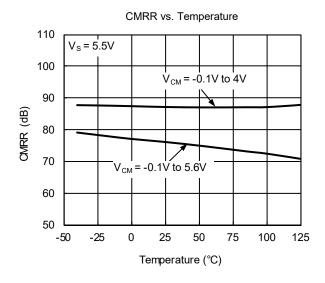
may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

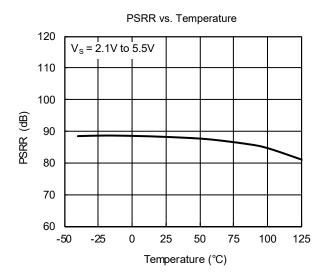
ESD SENSITIVITY CAUTION

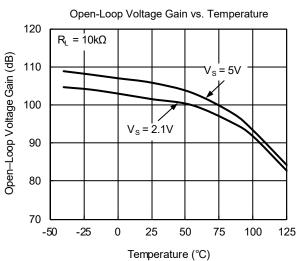
This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

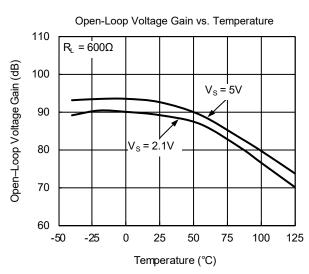
DISCLAIMER

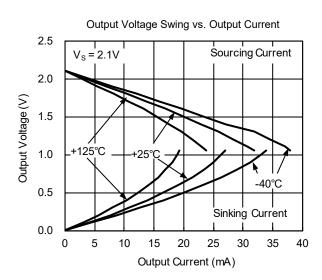
SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

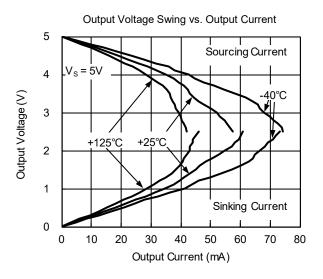

ELECTRICAL CHARACTERISTICS

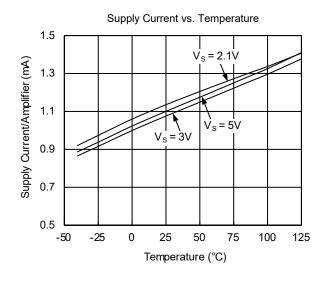

Ta = -40°C to +125°C	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Offset Voltage (Vos) T _A = -40°C to +125°C 5.5	Input Characteristics						
T _x = -40°C to +125°C	In much Office A Valle on (VV.)			1.2	5.1		
Input Offset Current (los) Input Common Mode Voltage Range (V _{CM}) V _V = 5.5V, V _{CM} = -0.1V to 4V 6.7 8.4 V _V = 5.5V, V _{CM} = -0.1V to 5.6V 6.6 C _V = -4.0°C to +125°C 5.9 C _V = 5.5V, V _{CM} = -0.1V to 5.6V 6.0 7.5 C _V = 5.5V, V _{CM} = -0.1V to 5.6V 6.0 7.5 C _V = 5.5V, V _{CM} = -0.1V to 5.6V 6.0 7.5 C _V = 5.5V, V _{CM} = -0.1V to 5.6V 6.0 7.5 C _V = 5.5V, V _{CM} = -0.1V to 5.6V 6.0 7.5 C _V = 5.5V, V _{CM} = -0.1V to 5.6V 7.2 C _V = 5.5V, V _{CM} = 0.05V to 4.95V 7.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.85V 8.4 9.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.85V 8.4 9.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.85V 8.4 9.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.85V 8.4 9.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.15°C 6.4 C _V = 1.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.15°C 6.4 C _V = 1.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.15°C 6.4 C _V = 1.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.15°C 6.4 C _V = 1.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.15°C C _V = 1.2 C _V = 1.2 C _V = 6.00Ω, V _{CM} = 0.15V to 4.15°C C _V = 1.2 C _V = 1.2	Input Offset voltage (Vos)	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			5.5	mV	
$ \begin{array}{l} \mbox{Input Common Mode Voltage Range (V_{CM})} & V_S = 5.5V & -0.1 & 5.6 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 4V & 67 & 84 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 4V & 67 & 84 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 66 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 75 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 60 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 60 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & 60 & 60 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.6V & V_S = -0.1V to 5.6V & 60 & 60 & \\ & V_S = 5.5V, V_{CM} = -0.1V to 5.5V, V_{CM} = -0.1V to 5.5V & 0.1V to 5$	Input Bias Current (I _B)			1		pА	
	Input Offset Current (I _{OS})			1		pА	
$ \begin{array}{c} T_{A} = -40^{\circ} C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Input Common Mode Voltage Range (V _{CM})	V _S = 5.5V	-0.1		5.6	V	
Common Mode Rejection Ratio (CMRR) Vs = 5.5V, V _{CM} = -0.1V to 5.6V 60 75 75 Open-Loop Voltage Gain (A _{OL}) R _c = 10kΩ, V _{OUT} = 0.05V to 4.95V 97 104 97 T _A = 40°C to +125°C 72 72 72 72 R _c = 600Ω, V _{OUT} = 0.15V to 4.85V 84 92 4.7 9.0 Input Offset Voltage Drift (ΔV _{OS} /ΔT) 4.7 4.7 1.7		$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	67	84		٩D	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oursell Made Delegation Detic (OMDD)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	66			dB	
$ \begin{array}{c} R_{i} = 10k\Omega, V_{Out} = 0.05V \ to 4.95V & 97 & 104 \\ \hline T_{A} = -40^{\circ}C \ to + 125^{\circ}C & 72 \\ \hline R_{i} = 600\Omega, V_{Out} = 0.15V \ to 4.85V & 84 & 92 \\ \hline T_{A} = -40^{\circ}C \ to + 125^{\circ}C & 64 \\ \hline \end{array} $	Common Mode Rejection Ratio (CMRR)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to $5.6V$	60	75		.ID	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	59			- dB	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 4.95V	97	104		-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1/4 0 1 (4)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	72			dB	
$ \begin{array}{ c c c c c } \hline \text{Input Offset Voltage Drift } (\Delta V_{Os}/\Delta T) & & & & & & & & & & \\ \hline \textbf{Output Characteristics} & & & & & & & & & & \\ \hline \textbf{Dutput Voltage Swing from Rail } (V_{OL}) & & & & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to +125^{\circ}\text{C}} & & & & \\ \hline \textbf{T}_A = -40^{\circ$	Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to 4.85V	84	92		- dB	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	64				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Offset Voltage Drift (ΔV _{OS} /ΔT)			4.7		μV/°C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Characteristics	,				I	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_L = 10k\Omega$		6	12		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Voltage Swing from Rail (V _{oL})	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			17	- mV	
				75	100	- mV	
$ \begin{array}{ c c c c }\hline \text{Output Current (lour)} & \hline T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 36 & & & & & \\ \hline \textbf{Power Supply} & & & & & & & & & \\ \hline \textbf{Power Supply Rejection Ratio (PSRR)} & & & & & & & & & \\ \hline \textbf{V}_S = +2.1\text{V to} + 5.5\text{V, V}_{CM} = (-\text{V}_S) + 0.5\text{V} & 68 & 82 & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & 63 & & & & \\ \hline \textbf{Uour} = 0 & & & & & & & \\ \hline \textbf{T}_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C} & & & & & & \\ \hline \textbf{Dynamic Performance} & & & & & & & \\ \hline \textbf{Sin-Bandwidth Product (GBP)} & R_L = 600\Omega & & & 12 & & & \\ \hline \textbf{Slew Rate (SR)} & G = 1, 2\text{V output step} & & & & 9.0 & & & \\ \hline \textbf{Settling Time to } 0.1\% (t_S) & G = 1, 2\text{V output step} & & & 0.2 & & \\ \hline \textbf{Overload Recovery Time} & V_{\text{IN}} \times \text{Gain} = V_S & & & 0.4 & & \\ \hline \textbf{Phase Margin } (\phi_O) & R_L = 600\Omega & & & 65 & & & \\ \hline \textbf{Noise Performance} & & & & & & & \\ \hline \textbf{Input Voltage Noise Density } (e_n) & & & & & & & & \\ \hline \end{array} $		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			144		
	0.1.10111		52	65		mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Current (I _{ΟUT})	T _A = -40°C to +125°C	36				
$ \begin{array}{c} V_S = +2.1 V \ to \ +5.5 V, \ V_{CM} = (-V_S) + 0.5 V & 68 & 82 & \\ \hline T_A = -40^{\circ} C \ to \ +125^{\circ} C & 63 & \\ \hline Quiescent \ Current \ (I_Q) & I_{OUT} = 0 & 2.2 & 2.8 & \\ \hline T_A = -40^{\circ} C \ to \ +125^{\circ} C & 3.6 & \\ \hline \end{array} $	Power Supply			l		L	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Operating Voltage Range		2.1		5.5	V	
$T_{A} = -40^{\circ}\text{C to } + 125^{\circ}\text{C} \qquad \qquad$		$V_S = +2.1V \text{ to } +5.5V, V_{CM} = (-V_S) + 0.5V$	68	82		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power Supply Rejection Ratio (PSRR)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	63			- dB	
		I _{OUT} = 0		2.2	2.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quiescent Current (I _Q)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			3.6	mA mA	
Slew Rate (SR) $G = 1$, 2V output step 9.0 Settling Time to 0.1% (t_S) $G = 1$, 2V output step 0.2 Overload Recovery Time $V_{IN} \times Gain = V_S$ 0.4 Phase Margin (ϕ_O) $R_L = 600\Omega$ 65 Noise Performance	Dynamic Performance	,				I	
Settling Time to 0.1% (t_s)	Gain-Bandwidth Product (GBP)	$R_L = 600\Omega$		12		MHz	
Overload Recovery Time $V_{IN} \times Gain = V_S$ 0.4 Phase Margin (ϕ_O) $R_L = 600\Omega$ 65 Noise Performance	Slew Rate (SR)	G = 1, 2V output step		9.0		V/µs	
Phase Margin (ϕ_0) R _L = 600Ω 65 Noise Performance $f = 1 \text{kHz}$ Input Voltage Noise Density (e_0)	Settling Time to 0.1% (t _s)	G = 1, 2V output step		0.2		μs	
Noise Performance f = 1kHz	Overload Recovery Time	V _{IN} × Gain = V _S		0.4		μs	
Input Voltage Noise Density (e _n)	Phase Margin (φ _O)	$R_L = 600\Omega$		65		٥	
Input Voltage Noise Density (e _n)	Noise Performance						
Input voltage Noise Density (e _n) f = 10kHz	InnertWeller on Nichol Brown (C.)	f = 1kHz		13		nV/√Hz	
	input voltage Noise Density (e _n)	f = 10kHz		9			

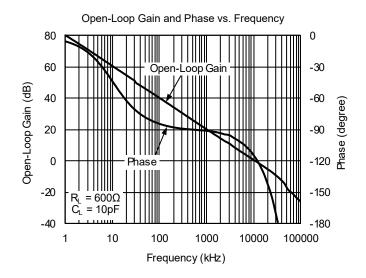

ELECTRICAL CHARACTERISTICS (continued)

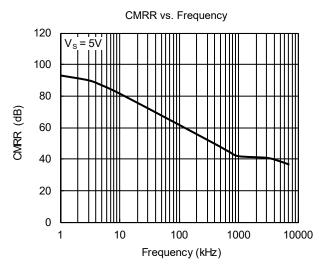

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Characteristics		•	•	•	•	
In much Office to Valle and (V.)			1.2	5.5	\ /	
Input Offset Voltage (Vos)	T _A = -40°C to +125°C			5.9	mV	
Input Bias Current (I _B)			1		рА	
Input Offset Current (I _{OS})			1		рА	
Input Common Mode Voltage Range (V _{CM})	V _S = 2.1V	-0.1		2.2	V	
	$V_S = 2.1V$, $V_{CM} = -0.1V$ to $0.6V$	60	77		-ID	
Output Made Deletion Detic (OMDD)	T _A = -40°C to +125°C	51			- dB	
Common Mode Rejection Ratio (CMRR)	V _S = 2.1V, V _{CM} = -0.1V to 2.2V	53	68		.ID	
	T _A = -40°C to +125°C	46			- dB	
	$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 2.05V	90	100		ID.	
	T _A = -40°C to +125°C	68			- dB	
Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to 1.95V	75	88		- dB	
	T _A = -40°C to +125°C	63				
Input Offset Voltage Drift (ΔV _{OS} /ΔT)			4.5		μV/°C	
Output Characteristics			1			
	$R_L = 10k\Omega$		4	10	mV - mV	
	T _A = -40°C to +125°C			12		
Output Voltage Swing from Rail (VoL)	R _L = 600Ω		36	51		
	T _A = -40°C to +125°C			67		
		15	30			
Output Current (I _{OUT})	T _A = -40°C to +125°C	7			mA	
Power Supply	1	1	1			
	I _{OUT} = 0		2.2	2.8		
Quiescent Current (I _Q)	T _A = -40°C to +125°C			3.6	- mA	
Dynamic Performance			1			
Gain-Bandwidth Product (GBP)	$R_L = 600\Omega$		11.5		MHz	
Slew Rate (SR)	G = 1, 2V output step		8.6		V/µs	
Settling Time to 0.1% (t _S)	G = 1, 2V output step		0.2		μs	
Overload Recovery Time	V _{IN} × Gain = V _S		0.7		μs	
Phase Margin (φ _o)	$R_L = 600\Omega$		65		0	
Noise Performance					·	
Innut Valta an Naire Describe (c.)	f = 1kHz		15		m\//	
Input Voltage Noise Density (e _n)	f = 10kHz		9		nV/√Hz	
	· ·	1				

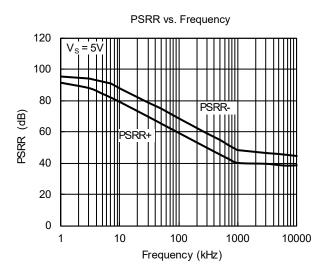

TYPICAL PERFORMANCE CHARACTERISTICS

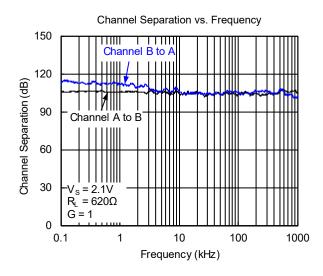


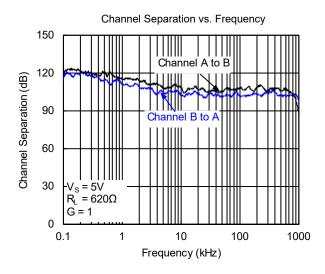


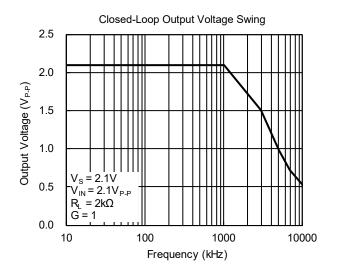


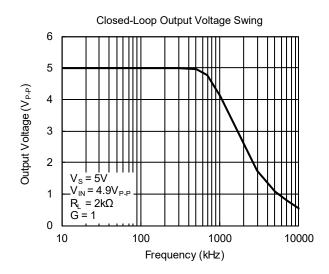


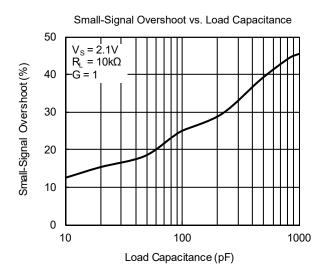


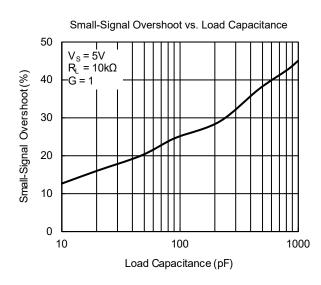


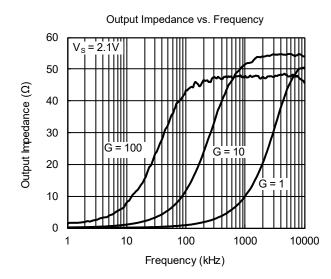


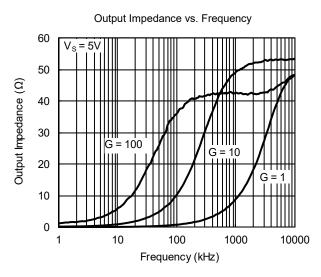


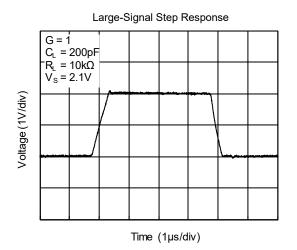


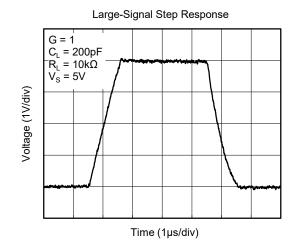


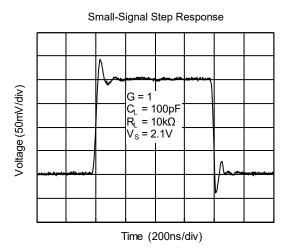


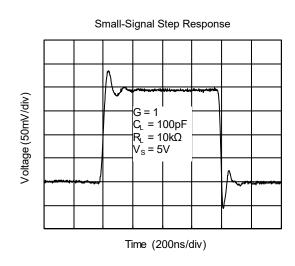


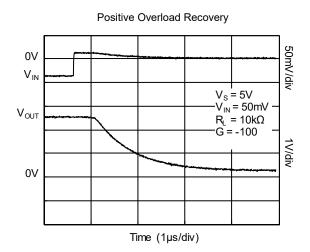


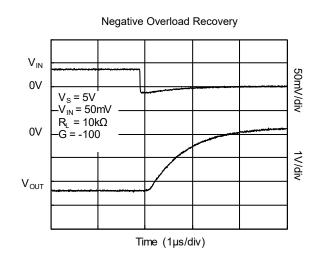


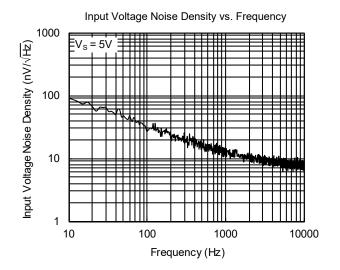


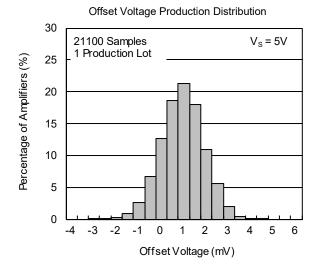












APPLICATION NOTES

Driving Capacitive Loads

The SGM8602 can directly drive 4700pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

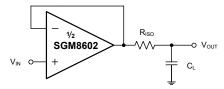


Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown Figure 2. It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting input with the output. C_{F} and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

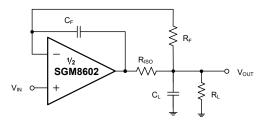


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The SGM8602 operates from either a single 2.1V to 5.5V supply or dual ± 1.05 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply +V_S with a 0.1µF ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the operational amplifier's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

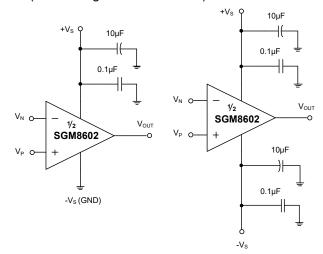


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGM8602 circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

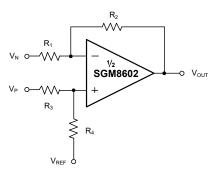


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

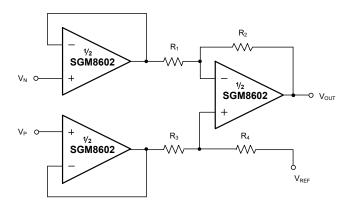
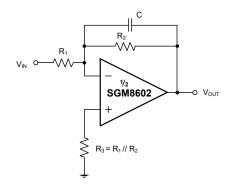
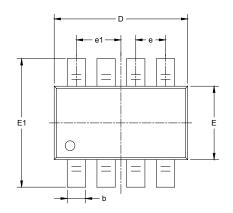


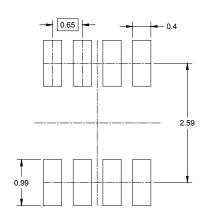
Figure 5. Instrumentation Amplifier

Active Low-Pass Filter

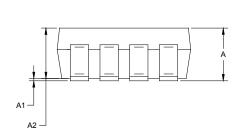
The low-pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

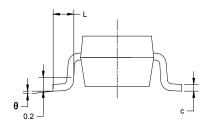


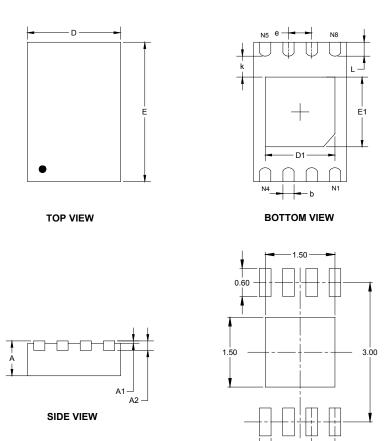

Figure 6. Active Low-Pass Filter


REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

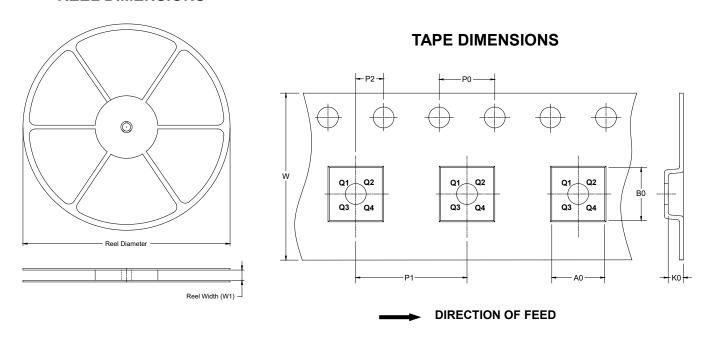

JANUARY 2018 – REV.A to REV.A.1	Page
Added Open-Loop Gain and Phase vs. Frequency	6
Changes from Original (AUGUST 2015) to REV.A	Page
Changed from product preview to production data	All


PACKAGE OUTLINE DIMENSIONS SOT-23-8


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.650	BSC	0.026 BSC		
e1	0.975	BSC	0.038 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS TDFN-2×3-8L

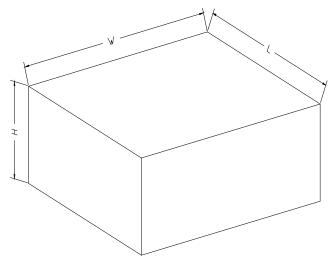

RECOMMENDED LAND	PATTERN (Unit: mm)

0.50

Symbol	_	nsions meters	Dimensions In Inches		
J	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008	REF	
D	1.924	2.076	0.076	0.082	
D1	1.400	1.600	0.055	0.063	
E	2.924	3.076	0.115	0.121	
E1	1.400	1.600	0.055	0.063	
k	0.200	MIN	0.008 MIN		
b	0.200	0.300	0.008 0.012		
е	0.500) TYP	0.020 TYP		
L	0.224	0.376	0.009	0.015	

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-8	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
TDFN-2×3-8L	7"	9.5	2.30	3.30	1.10	4.0	4.0	2.0	8.0	Q2

DD000

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18