OPA356 OPA2356

SBOS212A - NOVEMBER, 2001

200MHz, CMOS OPERATIONAL AMPLIFIER

FEATURES

- UNITY-GAIN BANDWIDTH: 450MHz
- WIDE BANDWIDTH: 200MHz GBW
- HIGH SLEW RATE: 360V/µs
- LOW NOISE: 5.8nV/√Hz
- EXCELLENT VIDEO PERFORMANCE: DIFF GAIN: 0.02%, DIFF PHASE: 0.05°
 0.1dB GAIN FLATNESS: 75MHz
- INPUT RANGE INCLUDES GROUND
- RAIL-TO-RAIL OUTPUT (within 100mV)
- LOW INPUT BIAS CURRENT: 3pA
- THERMAL SHUTDOWN
- SINGLE-SUPPLY OPERATING RANGE: 2.5V to 5.5V
- MicroSIZE PACKAGES

APPLICATIONS

- VIDEO PROCESSING
- ULTRASOUND
- OPTICAL NETWORKING, TUNABLE LASERS
- PHOTODIODE TRANSIMPEDANCE AMPS
- ACTIVE FILTERS
- HIGH-SPEED INTEGRATORS
- ANALOG-TO-DIGITAL (A/D) CONVERTER INPUT BUFFERS
- DIGITAL-TO-ANALOG (D/A) CONVERTER OUTPUT AMPLIFIERS
- BARCODE SCANNERS
- COMMUNICATIONS

DESCRIPTION

The OPAx356 series high-speed, voltage-feedback CMOS operational amplifiers are designed for video and other applications requiring wide bandwidth. The OPAx356 is unity gain stable and can drive large output currents. Differential gain is 0.02% and differential phase is 0.05°. Quiescent current is only 8.3mA per channel.

OPAx356 is optimized for operation on single or dual supplies as low as $2.5V (\pm 1.25V)$ and up to $5.5V (\pm 2.75V)$. Common-mode input range for the OPAx356 extends 100mV below ground and up to 1.5V from V+. The output swing is within 100mV of the rails, supporting wide dynamic range.

The OPAx356 series is available in single (SOT23-5 and SO-8), and dual (MSOP-8 and SO-8) versions. Multichannel versions feature completely independent circuitry for lowest crosstalk and freedom from interaction. All are specified over the extended -40° C to $+125^{\circ}$ C range.

OPAx356 RELATED PRODUCTS

FEATURES	PRODUCT		
200MHz, Rail-to-Rail Output, CMOS, Shutdown	OPAx355		
38MHz, Rail-to-Rail Input/Output, CMOS	OPAx350		
75MHz, Rail-to-Rail Output	OPAx631		
150MHz, Rail-to-Rail Output	OPAx634		
Differential Input/Output, 3.3V Supply	THS412x		

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V+ to V	7.5V
Signal Input Terminals, Voltage ⁽²⁾	. (V–) – 0.5V to (V+) + 0.5V
Current ⁽²⁾	10mA
Output Short-Circuit ⁽³⁾	Continuous
Operating Temperature	–55°C to +150°C
Storage Temperature	–65°C to +150°C
Junction Temperature	+160°C
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied. (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current limited to 10mA or less. (3) Short-circuit to ground one amplifier per package.

-55°C to +150°C -65°C to +150°C +160°C +160°C +300°C +300°C

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

This integrated circuit can be damaged by ESD. Texas Instru-

ELECTROSTATIC

DISCHARGE SENSITIVITY

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽²⁾	TRANSPORT MEDIA, QUANTITY
OPA356AIDBV	SOT23-5	DBV	–40°C to +125°C	OAAI	OPA356AIDBVT	Tape and Reel, 250
"	"	"	"	"	OPA356AIDBVR	Tape and Reel, 3000
OPA356AID	SO-8	D	–40°C to +125°C	OPA356A	OPA356AID	Rails, 100
"	"	"	"	"	OPA356AIDR	Tape and Reel, 2500
OPA2356AIDGK	MSOP-8	DGK	–40°C to +125°C	AYI	OPA2356AIDGKT	Tape and Reel, 250
"	"	"	"	"	OPA2356AIDGKR	Tape and Reel, 2500
OPA2356AID	SO-8	D	–40°C to +125°C	OPA2356A	OPA2356AID	Rails, 100
"	"	"	"	"	OPA2356AIDR	Tape and Reel, 2500

NOTES: (1) For the most current specifications and package information, refer to our web site at www.ti.com. (2) Models labeled with "T" indicate smaller quantity tape and reel, "R" indicates large quantity tape and reel and "D" indicates rails of specified quantity.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS: $V_s = +2.7V$ to +5.5V Single Supply

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

At T_A = +25°C, R_F = 604 Ω , R_L = 150 Ω , Connected to V_S/2, unless otherwise noted.

			OPA356AIDBV, AID, OPA2356AIDGK, AID			
PARAMETER		CONDITION	MIN	ТҮР	MAX	UNITS
OFFSET VOLTAGE						
Input Offset Voltage	Vos	V _S = +5V		±2	±9	mV
		Specified Temperature Range			±15	mV
vs Temperature	dV _{os} /dT	Specified Temperature Range		±7		μ ν/ °C
vs Power Supply	PSRR	$V_{\rm S}$ = +2.7V to +5.5V, $V_{\rm CM}$ = $V_{\rm S}/2 - 0.15V$		±80	±350	μV/V
INPUT BIAS CURRENT						
Input Bias Current	I _B			3	±50	pА
Input Offset Current	I _{OS}			±1	±50	pА
NOISE						
Input Noise Voltage Density	en	f = 1MHz		5.8		nV/√Hz
Current Noise Density	i _n	f = 1MHz		50		fA/√Hz
INPUT VOLTAGE RANGE						
Common-Mode Voltage Range	Vcm		(V–) – 0.1		(V+) – 1.5	V
Common-Mode Rejection Ratio	CMRR	$V_{S} = +5.5V, -0.1V < V_{CM} < +4.0V$	66	80		dB
		Specified Temperature Range	66			dB
INPUT IMPEDANCE						
Differential				10 ¹³ 1.5		Ω∥pF
Common-Mode				10 ¹³ 1.5		Ω pF
		$V_{0} = \pm 5V_{0} + 3V_{0} = 4.7V_{0}$	84	92		dB
	OPA356	$V_0 = +5V, 0.3V < V_0 < 4.7V$	80	52		dB
	OPA2356	$V_{c} = +5V, 0.4V < V_{c} < 4.6V$	80			dB
Small-Signal Bandwidth	f	$G_{-} = \pm 1 V_{-} = 100 \text{ mV} \text{ p-p} \text{ R}_{-} = 00$		450		MH-7
Smail-Signal Bandwidth	I–3dB f	$G = \pm 2$ V = 100mVpp, $R_F = 0.02$		430		MHz
	'−3dB f_ourp	$G_{-+2} = 100 \text{mVp-p}, R_{-} = 1500$		170		MHz
	f aur	$G = +2$ $V_0 = 100 \text{mVp p}$, $R_1 = 100 \text{s}^2$		200		MHz
Gain-Bandwidth Product	'–3dB GBW	G = +10 R = 1kO		200		MHz
Bandwidth for 0 1dB Gain Flatness	form	$G = +2$ $V_0 = 100$ mVp-p $R_c = 5600$		75		MHz
Slew Rate	SR	$V_{0} = +5V$ G = +2 4V Output Step		300/-360		V/us
Rise-and-Fall Time	OR	$G = +2 V_{c} = 200 \text{mVp-p} \ 10\% \text{ to } 90\%$		2 4		ns
		$G = +2$, $V_0 = 2V_{P-P}$, 10% to 90%		8		ns
Settling Time, 0.1%		$V_{s} = +5V$, G = +2, 2V Output Step		30		ns
0.01%		$V_{S} = +5V, G = +2, 2V$ Output Step		120		ns
Overload Recovery Time		$V_{IN} \bullet Gain = V_S$		8		ns
Harmonic Distortion						
2 nd Harmonic		$G = +2, f = 1MHz, V_0 = 2Vp-p, R_L = 200\Omega$		-81		dBc
3 rd Harmonic		$G = +2, f = 1MHz, V_0 = 2Vp-p, R_L = 200\Omega$		-93		dBc
Differential Gain Error		NTSC, $R_L = 150\Omega$		0.02		%
Differential Phase Error		NTSC, $R_L = 150\Omega$		0.05		degrees
Channel-to-Channel Crosstalk	OPA2356	f = 5MHz		-90		dB
OUTPUT						
Voltage Output Swing from Rail		V _S = +5V, R _L = 150Ω, A _{OL} > 84dB		0.2	0.3	V
Voltage Output Swing from Rail		$V_{S} = +5V, R_{L} = 1k\Omega$		0.1		V
Voltage Output Swing from Rail		$I_0 = \pm 100 \text{mA}$		0.8	1	V
Ouput Current, Continuous ⁽¹⁾	Ι _ο		±60			mA
Maximum Output Current, Peak ⁽¹⁾	Ι _Ο	$V_{S} = +5V$	±100			mA
Maximum Output Current, Peak ⁽¹⁾	Ι _Ο	$V_{S} = +3V$		±80		mA
Short Circuit Current				+250/-200		mA
Closed-Loop Output Impedance		f < 100kHz		0.02		Ω
POWER SUPPLY						
Specified Voltage Range	Vs		2.7		5.5	V
Operating Voltage Range				2.5 to 5.5		V
Quiescent Current (per amplifier)	Ι _Q	$V_{S} = +5V, I_{O} = 0$		8.3	11	mA
		Specified Temperature Range			14	mA

ELECTRICAL CHARACTERISTICS: V_S = +2.7V to +5.5V Single Supply (Cont.)

Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

At T_A = +25°C, R_F = 604\Omega, R_L = 150\Omega, Connected to V_S/2, unless otherwise noted.

		OPA356AIDBV, AID, OPA2356AIDGK, AID			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
THERMAL SHUTDOWN					
Junction Temperature					
Shutdown			160		°C
Reset from Shutdown			140		°C
TEMPERATURE RANGE					
Specified Range		-40		125	°C
Operating Range		-55		150	°C
Storage Range		-65		150	°C
Thermal Resistance θ_{JA}					°C/W
SOT23-5, MSOP-8			150		°C/W
SO-8			125		°C/W

NOTES: (1) See typical characteristic "Output Voltage Swing vs Output Current".

TYPICAL CHARACTERISTICS

At T_A = +25°C and V_S = 5V, G = +2, R_F = 604 Ω , R_L = 150 Ω connected to V_S/2, unless otherwise noted.

(NON-INVERTING SMALL-SIGNAL STEP RESPONSE

NON-INVERTING LARGE-SIGNAL STEP RESPONSE

At T_A = +25°C and V_S = 5V, G = +2, R_F = 604 Ω , R_L = 150 Ω connected to V_S/2, unless otherwise noted.

At T_A = +25°C and V_S = 5V, G = +2, R_F = 604 Ω , R_L = 150 Ω connected to V_S/2, unless otherwise noted.

COMMON-MODE REJECTION RATIO AND POWER-SUPPLY REJECTION RATIO vs FREQUENCY 100 90 -PSRR 80 +PSRR CMRR, PSRR (dB) 70 60 CMRR 50 40 30 20 10 0 10k 100k 1M 10M 100M 1G Frequency (Hz)

At T_A = +25°C and V_S = 5V, G = +2, R_F = 604 Ω , R_L = 150 Ω connected to V_S/2, unless otherwise noted.

SUPPLY CURRENT vs TEMPERATURE 14 12 $V_{S} = 5.5V$ Supply Current (mA) 10 8 6 $V_{S} = 3V$ $V_{s} = 2.5V$ 4 $V_{\rm S} = 5V$ 2 0 -55 -35 -15 5 25 45 65 85 105 125 135 Temperature (°C)

FOR $V_{S} = 5V$ 5 25°C -55°C 4 Output Voltage (V) 125°C 3 Continuous currents above 60mA are not recommended 2 125°C 1 -55°C 25°C 0 0 50 100 150 200 250 Output Current (mA)

OUTPUT VOLTAGE SWING vs OUTPUT CURRENT

At T_A = +25°C and V_S = 5V, G = +2, R_F = 604 Ω , R_L = 150 Ω connected to V_S/2, unless otherwise noted.

POWER-SUPPLY REJECTION RATIO vs TEMPERATURE
Power-Supply Rejection Ratio
Power-Supply Rejection Ratio

COMMON-MODE REJECTION RATIO AND

APPLICATIONS INFORMATION

The OPAx356 series is a CMOS, high-speed, voltage feedback, operational amplifier designed for video and other general-purpose applications. It is available as a single or dual op amp.

The amplifier features a 200MHz gain bandwidth and $360V/\mu s$ slew rate, but it is unity-gain stable and can be operated as a +1V/V voltage follower.

Its input common-mode voltage range includes ground, allowing the OPAx356 to be used in virtually any single-supply application up to a supply voltage of +5.5V.

PCB LAYOUT

Good high-frequency PC board layout techniques should be employed for the OPAx356. Generous use of ground planes, short direct signal traces, and a suitable bypass capacitor located at the V+ pin will assure clean, stable operation. Large areas of copper also provide a means of dissipating heat that is generated within the amplifier in normal operation.

Sockets are definitely not recommended for use with any high-speed amplifier.

A 10 μ F ceramic bypass capacitor is the minimum recommended value; adding a 1 μ F or larger tantalum capacitor in parallel can be beneficial when driving a low-resistance load. Providing adequate bypass capacitance is essential to achieving very low harmonic and intermodulation distortion.

OPERATING VOLTAGE

The OPAx356 is specified over a power-supply range of +2.7V to +5.5V (\pm 1.35 to \pm 2.75V). However, the supply voltage may range from +2.5V to +5.5V (\pm 1.25V to \pm 2.75V). Supply voltages higher than 7.5V (absolute maximum) can permanently damage the amplifier.

Parameters that vary significantly over supply voltage or temperature are shown in the "Typical Characteristics" section of this data sheet.

OUTPUT DRIVE

The OPAx356 output stage is capable of driving a standard back-terminated 75 Ω video cable. By back-terminating a transmission line, it does not exhibit a capacitive load to its driver. A properly back-terminated 75 Ω cable does not appear as capacitance; it presents only a 150 Ω resistive load to the OPAx356 output.

The output stage can supply high short-circuit current (typically over 200mA). Therefore, an on-chip thermal shutdown circuit is provided to protect the OPAx356 from dangerously high junction temperatures. At 160°C, the protection circuit will shut down the amplifier. Normal operation will resume when the junction temperature cools to below 140°C.

NOTE: It is not recommended to run a continuous DC current in excess of ± 60 mA. Refer to the graph of "Output Voltage Swing vs Output Current", shown in the "Typical Characteristics" section of this data sheet.

INPUT AND ESD PROTECTION

All OPAx356 pins are static protected with internal ESD protection diodes tied to the supplies, as shown in Figure 1.

These diodes will provide overdrive protection if the current is externally limited to 10mA by the source or by a resistor.

FIGURE 1. Internal ESD Protection.

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion.
 - D. Falls within JEDEC MO-178

PACKAGE DRAWINGS (Cont.)

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187

D (R-PDSO-G**)

8 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-012

3-Oct-2003

PACKAGING INFORMATION

ORDERABLE DEVICE	STATUS(1)	PACKAGE TYPE	PACKAGE DRAWING	PINS	PACKAGE QTY
OPA2356AID	ACTIVE	SOIC	D	8	100
OPA2356AIDGKR	ACTIVE	VSSOP	DGK	8	2500
OPA2356AIDGKT	ACTIVE	VSSOP	DGK	8	250
OPA2356AIDR	ACTIVE	SOIC	D	8	2500
OPA356AID	ACTIVE	SOIC	D	8	100
OPA356AIDBVR	ACTIVE	SOP	DBV	5	3000
OPA356AIDBVT	ACTIVE	SOP	DBV	5	250
OPA356AIDR	ACTIVE	SOIC	D	8	2500

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.