

6-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

GENERAL DESCRIPTION

This 6-bit non-inverting translator is a bidirectional voltage-level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.65V to 5.5V while it tracks the V_{CCA} supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the V_{CCB} supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V and 5V voltage nodes.

When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, as long as V_{CCA} is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SGM4576 is available in Green TQFN-2.6×1.8-16L package. It operates over an ambient temperature range of -40°C to +85°C.

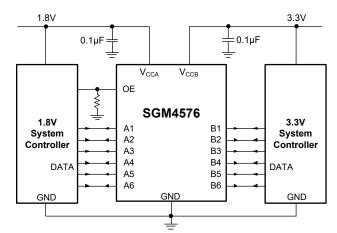
FEATURES

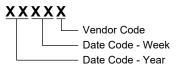
- No Direction-Control Signal Needed
- Data Rates24Mbps (Push-Pull)2Mbps (Open-Drain)
- 1.65V to 5.5V on A Ports and 2.3V to 5.5V on B
 Ports (V_{CCA} ≤ V_{CCB})
- V_{CC} Isolation: If Either V_{CC} is at GND,
 Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required:
 Either V_{CCA} or V_{CCB} can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- -40°C to +85°C Operating Temperature Range
- Available in Green TQFN-2.6×1.8-16L Package

APPLICATIONS

I²C/SMBus UART GPIO

TYPICAL APPLICATION




Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM4576	TQFN-2.6×1.8-16L	-40°C to +85°C	SGM4576YTQA16G/TR	4576 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

ESD SENSITIVITY CAUTION

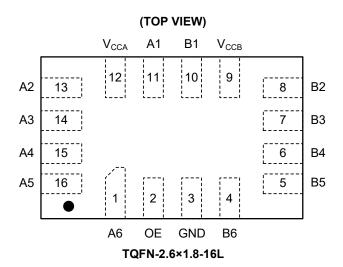
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range
V _{CCA} 0.3V to 6V
V _{CCB} 0.3V to 6V
A Ports, B Ports, OE Input Voltage Range, V _I ⁽¹⁾
-0.3V to 6V
Voltage Range Applied to Any Output in the High-Impedance
or Power-Off State, V _O ⁽¹⁾
A Ports0.3V to 6V
B Ports0.3V to 6V
Voltage Range Applied to Any Output in the High or Low
State, V _O ^{(1) (2)}
A Ports0.3V to V _{CCA} + 0.3V
B Ports0.3V to V _{CCB} + 0.3V
Input Clamp Current, I _{IK} (V _I < 0)50mA
Output Clamp Current, I _{OK} (V _O < 0)25mA
Continuous Output Current, Io±50mA
Continuous Current through V _{CCA} , V _{CCB} , or GND±100mA
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM4000V
MM300V
CDM1000V

NOTES:

- 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- 2. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.


RECOMMENDED OPERATING CONDITIONS (3, 4)

Supply Voltage Range (5)	
V _{CCA}	1.65V to 5.5V
V _{CCB}	2.3V to 5.5V
High-Level Input Voltage, V _{IH}	
A Port I/Os ($V_{CCA} = 1.65V$, V_{CCB}	= 2.3V to 5.5V)
	V _{CCI} - 0.1V to V _{CCI}
A Port I/Os (V _{CCA} = 1.95V to 5.5)	$V, V_{CCB} = 2.3V \text{ to } 5.5V)$
	V _{CCI} - 0.4V to V _{CCI}
B Port I/Os	V _{CCI} - 0.4V to V _{CCI}
OE Input	V _{CCA} × 0.8V to 5.5V
Low-Level Input Voltage, V _{IL}	
A Port I/Os	0V to 0.15V
B Port I/Os	0V to 0.15V
OE Input	0V to V _{CCA} × 0.25V
Operating Temperature Range	40°C to +85°C

NOTES:

- 3. V_{CCI} is the V_{CC} associated with the input ports.
- 4. V_{CCO} is the V_{CC} associated with the output ports.
- 5. V_{CCA} must be less than or equal to $V_{\text{CCB}},$ and V_{CCA} must not exceed 5.5V.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	A6	Input/Output 6. Referenced to V _{CCA} .
2	OE	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
3	GND	Ground.
4	В6	Input/Output 6. Referenced to V _{CCB} .
5	B5	Input/Output 5. Referenced to V _{CCB} .
6	B4	Input/Output 4. Referenced to V _{CCB} .
7	В3	Input/Output 3. Referenced to V _{CCB} .
8	B2	Input/Output 2. Referenced to V _{CCB} .
9	V _{CCB}	B Ports Supply Voltage. 2.3V ≤ V _{CCB} ≤ 5.5V.
10	B1	Input/Output 1. Referenced to V _{CCB} .
11	A1	Input/Output 1. Referenced to V _{CCA} .
12	V _{CCA}	A Ports Supply Voltage. 1.65V ≤ V _{CCA} ≤ 5.5V and V _{CCA} ≤ V _{CCB} .
13	A2	Input/Output 2. Referenced to V _{CCA} .
14	A3	Input/Output 3. Referenced to V _{CCA} .
15	A4	Input/Output 4. Referenced to V _{CCA} .
16	A5	Input/Output 5. Referenced to V _{CCA} .

ELECTRICAL CHARACTERISTICS

 $(V_{CCA} = 1.65V \text{ to } 5.5V, V_{CCB} = 2.3V \text{ to } 5.5V, \text{Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER		cc	ONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ELECTRICAL CHARACTER	RISTICS			•				
A Ports High Level Output Vo	oltage (V _{OHA})	I _{OH} = -20μA, V _{IB} ≥	Full	V _{CCA} × 0.67				
A Ports Low Level Output Vo	oltage (V _{OLA})	$I_{OL} = 1mA, V_{IB} \le 0.$	_{OL} = 1mA, V _{IB} ≤ 0.15V				0.4	V
B Ports High Level Output Vo	oltage (V _{OHB})	I _{OH} = -20μA, V _{IA} ≥	V _{CCA} - 0.4V	Full	V _{CCB} × 0.67			7 '
B Ports Low Level Output Vo	oltage (V _{OLB})	$I_{OL} = 1mA, V_{IA} \le 0.$.15V	Full			0.4	
Input Leakage Current (I _I)	OE			+25°C			±1	μА
input Leakage Current (ii)	OL			Full			±1.5	μΑ
	A Ports	V _{CCA} = 0V, V _{CCB} =	0\/ to 5 5\/	+25°C			±0.5	
Power Off Leakage Current	A POILS	VCCA - UV, VCCB -	UV 10 5.5V	Full			±1	<u> </u>
(I _{OFF})	B Ports	\/ = 0\/ to 5 5\/	V = 0V	+25°C			±0.5	μA
	D POILS	$V_{CCA} = 0V$ to 5.5V, $V_{CCB} = 0V$		Full			±1	
3-State Output Leakage	A or B Ports	OE = 0V		+25°C			±0.5	μА
(I _{OZ})	AUIDFUIS			Full			±1	μΑ
		$V_{I} = V_{O} = OPEN,$ $V_{CCA} = 1.65V \text{ to } V_{CCB},$ $V_{CCB} = 2.3V \text{ to } 5.5V$ $V_{CCA} = 5.5V, V_{CCB} = 0V$ $V_{CCA} = 0V, V_{CCB} = 5.5V$		Full			13	
Quiescent Supply Current (Ic	cca)			Full			13	μΑ
				Full			-1	
		$V_1 = V_0 = OPEN,$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			17	
Quiescent Supply Current (Ic	CCB)	$I_0 = 0$	$V_{CCA} = 5.5V$, $V_{CCB} = 0V$	Full			-1	μA
			$V_{CCA} = 0V$, $V_{CCB} = 5.5V$	Full			8	
Quiescent Supply Current (Id	cca + Iccb)	$V_1 = V_0 = OPEN,$ $I_0 = 0$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			21	μA
Quiescent Supply Current (Ic	nt (least)		V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			13	μA
Quiescent Supply Current (I_{CCZB}) $V_I = V_{CCI}$ or $0V$, $I_O = 0$, $OE = 0V$		$V_I = V_{CCI}$ or $0V$, $I_O = 0$, $OE = 0V$	$V_{CCA} = 1.65V \text{ to } V_{CCB},$ $V_{CCB} = 2.3V \text{ to } 5.5V$	Full			8	μA
OE Input Capacitance (C _i)		V _{CCA} = 3.3V, V _{CCB}	= 3.3V	+25°C		6		pF
Input/Output Capacitance A	Ports (C _{IO})		- 2 2\/	+25°C		6		nF
Input/Output Capacitance B	Ports (C _{IO})	$V_{CCA} = 3.3V, V_{CCB}$	- 3.3V	+25°C		6		pF

TIMING REQUIREMENTS

	DADAMETED		V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	LINUTO
	PARAMETER		TYP	TYP	TYP	UNITS
(T _A = +25°C, V _{CCA} = 1.8\	/, unless otherwise noted.)				•
Data Rate	Push-Pull Driving	Push-Pull Driving		24	24	Mhna
Dala Rale	Open-Drain Driving		2	2	2	Mbps
Dules Duration (t.)	Push-Pull Driving	Data lauruta	41	41	41	
Pulse Duration (t _w)	Open-Drain Driving	Data Inputs	500	500	500	ns
(T _A = +25°C, V _{CCA} = 2.5\	/, unless otherwise noted.)				
Data Data	Push-Pull Driving		24	24	24	Mhaa
Data Rate Open-Drain Drivi			2	2	2	- Mbps
Dula Dunation (t.)	Push-Pull Driving	Data laurata	41	41	41	
Pulse Duration (t _w)	Open-Drain Driving	Data Inputs	500	500	500	ns
(T _A = +25°C, V _{CCA} = 3.3\	/, unless otherwise noted.)				
Data Rate	Push-Pull Driving			24	24	Mhma
Dala Rale	Open-Drain Driving			2	2	Mbps
Dalas Danation (t.)	Push-Pull Driving	Data laurata		41	41	
Pulse Duration (t _w)	Open-Drain Driving	Data Inputs		500	500	ns
(T _A = +25°C, V _{CCA} = 5V,	unless otherwise noted.)					1
Data Data	Push-Pull Driving				24	
Data Rate	Open-Drain Driving				2	Mbps
Dala - Danation (t.)	Push-Pull Driving	Data laurat			41	
Pulse Duration (t _w)	Open-Drain Driving	Data Inputs			500	ns

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.8V, unless otherwise noted.)

DADAMETED	FROM	то	TEST	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	шито	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	TYP	TYP	TYP	UNITS	
			Push-Pull Driving	3.5	3.5	5.1		
t _{PHL}		^	Б	Open-Drain Driving	56.2	27.0	27.9	
4	Α	В	Push-Pull Driving	5.1	4.5	4.4	ns	
t _{PLH}			Open-Drain Driving	142.7	119.8	92.1		
+			Push-Pull Driving	3.0	2.8	3.4		
t_{PHL}	В	^	Open-Drain Driving	25.6	25.3	25.4		
	Б	Α	Push-Pull Driving	3.7	3.2	2.6	ns	
^L PLH	t _{PLH}		Open-Drain Driving	55.1	49.4	48.0		
$t_{\text{EN}} (t_{\text{PZH}} \& t_{\text{PZL}})$	EN (t _{PZH} & t _{PZL}) OE A or			28.4	24.6	22.5		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		674	677	671	ns	
•	A Dorto	Rise Time	Push-Pull Driving	7.2	8.1	9.1	ns	
t_{rA}	AFOILS	Rise Tille	Open-Drain Driving	12.3	11.3	10.1	115	
•	P Dorto	Rise Time	Push-Pull Driving	7.2	6.1	5.4	200	
t_{rB}	D FUIS	Rise Tille	Open-Drain Driving	99.3	72.9	36.7	ns	
4	A Dorto	Fall Time	Push-Pull Driving	5.7	5.9	6.9		
ЧA	t _{fA} A Ports		Open-Drain Driving	3.8	3.6	3.6	ns	
	D. Davida	Fall Time	Push-Pull Driving	7.9	7.8	8.4		
t_{fB}	B Ports	raii iiiie	Open-Drain Driving	3.5	8.4	5.0	ns	
Data Rate			Push-Pull Driving	24	24	24	Mhns	
Data Kate			Open-Drain Driving	2	2	2	Mbps	

SWITCHING CHARACTERISTICS (continued)

(T_A = +25°C, V_{CCA} = 2.5V, unless otherwise noted.)

DADAMETED	FROM	то	TEST	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	LINUTO
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	TYP	TYP	TYP	UNITS
	Α		Push-Pull Driving	4.5	4.5	5.0	
t _{PHL}		D.	Open-Drain Driving	26.2	27.1	26.2	
		В	Push-Pull Driving	3.8	3.3	3.1	ns
t _{PLH}			Open-Drain Driving	111.0	95.6	76.0	
4			Push-Pull Driving	4.2	4.0	4.1	
t _{PHL}	ь	A	Open-Drain Driving	25.8	25.5	25.6	
	В		Push-Pull Driving	3.7	3.5	3.6	ns
t _{PLH}			Open-Drain Driving	52.7	50.6	49.8	
t _{EN} (t _{PZH} & t _{PZL})	PZH & tPZL) OE			21.6	17.4	15.5	no
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		689	688	678	ns
4	A Ports Rise Time		Push-Pull Driving	6.4	6.7	6.9	
t _{rA}	A PORS F	rise rime	Open-Drain Driving	10.5	7.7	7.8	ns
4	D Dorto I	Rise Time	Push-Pull Driving	6.2	5.4	4.9	200
t _{rB}	B Ports i	Rise Time	Open-Drain Driving	67.0	50.9	30.5	ns
4	A Dorto	Fall Time	Push-Pull Driving	8.6	8.2	7.3	no
t _{fA}	APOILS	rali Time	Open-Drain Driving	3.6	3.3	3.1	ns
4	P. Dorto	Fall Time	Push-Pull Driving	8.5	7.7	8.1	20
t _{fB}	B Ports	rali ilille	Open-Drain Driving	3.4	3.9	5.4	ns
Data Data			Push-Pull Driving	24	24	24	Mhna
Data Rate			Open-Drain Driving	2	2	2	Mbps

SWITCHING CHARACTERISTICS (continued)

(T_A = +25°C, V_{CCA} = 3.3V, unless otherwise noted.)

DADAMETED	FROM			V _{CCB} = 3.3V	V _{CCB} = 5V	LINUTO			
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	TYP	TYP	UNITS			
+			Push-Pull Driving	4.4	5.0				
t_{PHL}	Α	_	Open-Drain Driving	25.5	27.5				
		В	Push-Pull Driving	3.5	2.7	ns			
t _{PLH}			Open-Drain Driving	52.4	51.4				
4			Push-Pull Driving	4.1	4.4				
t _{PHL}	В	^	Open-Drain Driving	25.8	54.3				
4	Ь	Α	Push-Pull Driving	3.1	2.8	ns			
t _{PLH}						Open-Drain Driving	50.3	49.4	
t _{EN} (t _{PZH} & t _{PZL})	(t _{PZH} & t _{PZL}) OE	A or B		15.9	13.8	-			
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		699	678	ns			
4	A Porto	Rise Time	Push-Pull Driving	5.2	6.2	ns			
t _{rA}	AFOILS	Nise Time	Open-Drain Driving	6.3	6.2	115			
4	P. Dorto	Rise Time	Push-Pull Driving	5.3	4.7	no			
t_{rB}	B Poits	Rise Time	Open-Drain Driving	8.3	6.8	ns			
4	A Porto	Fall Time	Push-Pull Driving	7.3	7.6	no			
t _{fA}	A POILS	rali Tillie	Open-Drain Driving	3.1	3.0	ns			
+	P. Dorto	Fall Time	Push-Pull Driving	7.7	7.3	nc			
t _{fB}	B Ports	rali ililie	Open-Drain Driving	3.8	4.6	ns			
Data Pata			Push-Pull Driving	24	24	Mbss			
Data Rate			Open-Drain Driving	2	2	Mbps			

SWITCHING CHARACTERISTICS (continued)

($T_A = +25$ °C, $V_{CCA} = 5V$, unless otherwise noted.)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{CCB} = 5V TYP	UNITS	
			Push-Pull Driving	5.3		
t _{PHL}	A		Open-Drain Driving	27.4		
	Α	В	Push-Pull Driving	2.4	ns	
t _{PLH}			Open-Drain Driving	50.6	1	
			Push-Pull Driving	5.0		
t _{PHL}	В	^	Open-Drain Driving	26.3]	
		В	Α	Push-Pull Driving	2.2	ns
t _{PLH}			Open-Drain Driving	49.3	1	
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		22.6		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		665	ns	
4	A Ports F	No. Time	Push-Pull Driving	5.3		
t_{rA}	A Ports F	dise rime	Open-Drain Driving	5.0	ns	
4	D. Danta F	No. Time	Push-Pull Driving	4.9		
t_{rB}	B Ports F	rise rime	Open-Drain Driving	6.5	ns	
	A Davida I	Tall Time a	Push-Pull Driving	8.5		
t_fA	A Ports I	-aii rime	Open-Drain Driving	2.8	ns	
	D. Dorto I	Tall Time	Push-Pull Driving	7.7	no	
t_{fB}	B Ports I	-all fille	Open-Drain Driving	4.2	ns	
Data Data			Push-Pull Driving	24	N.Albara a	
Data Rate			Open-Drain Driving	2	Mbps	

PARAMETER MEASUREMENT INFORMATION

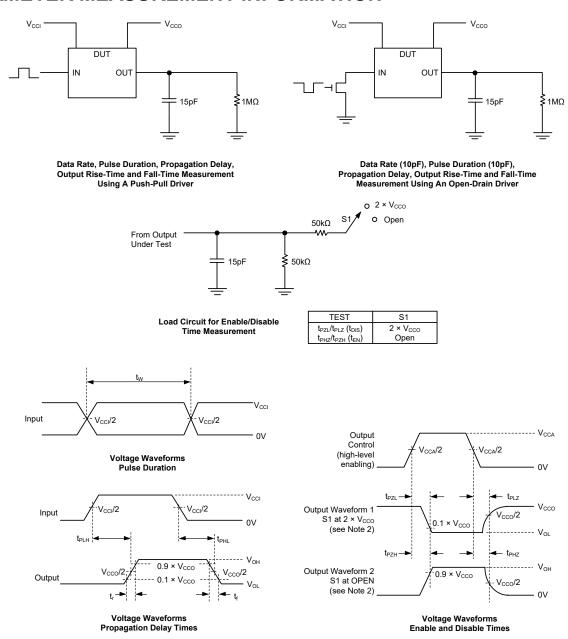


Figure 2. Load Circuits and Voltage Waveforms

NOTES:

- 1. C_L includes probe and jig capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, $Z_0 = 50\Omega$, $dv/dt \geq 1V/ns$.
- 4. The outputs are measured one at a time, with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as t_{DIS} .
- 6. t_{PZL} and t_{PZH} are the same as t_{EN} .
- 7. t_{PLH} and t_{PHL} are the same as t_{PD} .
- 8. V_{CCI} is the V_{CC} associated with the input ports.
- 9. V_{CCO} is the V_{CC} associated with the output ports.
- 10. All parameters and waveforms are not applicable to all devices.

DETAILED DESCRIPTION

Overview

The SGM4576 can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application is for interfacing with open-drain drivers on the data I/Os such as I²C or 1-wire, where the data is bidirectional and no control signal is available. The SGM4576 can also be used in applications where a push-pull driver is connected to the data I/Os.

Architecture

The SGM4576 architecture (see Figure 3) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A.

These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

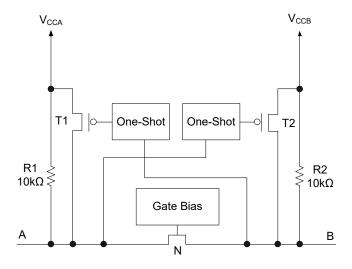


Figure 3. Architecture of a SGM4576 Cell

The SGM4576 employs two key circuits to enable this voltage translation:

- An N-channel pass-gate transistor topology that ties the A port to the B port.
- Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B ports.

Input Driver Requirements

The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the SGM4576. Similarly, the t_{PHL} and data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and data rates in the datasheet assume that the output impedance of the external driver is less than 50Ω .

Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. The sequencing of each power supply will not damage the device during the power up operation, so either power supply can be ramped up first.

Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can be time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to optimize trade-offs between dynamic I_{CC}, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the SGM4576 output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level effects.

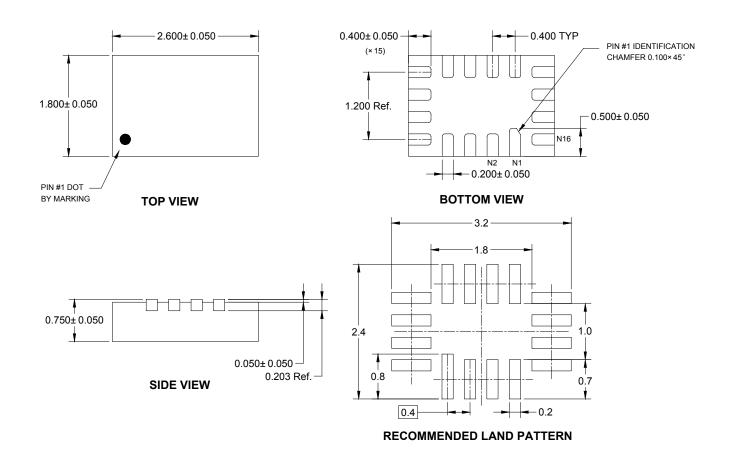
DETAILED DESCRIPTION (continued)

Enable and Disable

The SGM4576 has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. OE has an internal pull-down current source, as long as V_{CCA} is powered. The disable time (t_{DIS}) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time (t_{EN}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

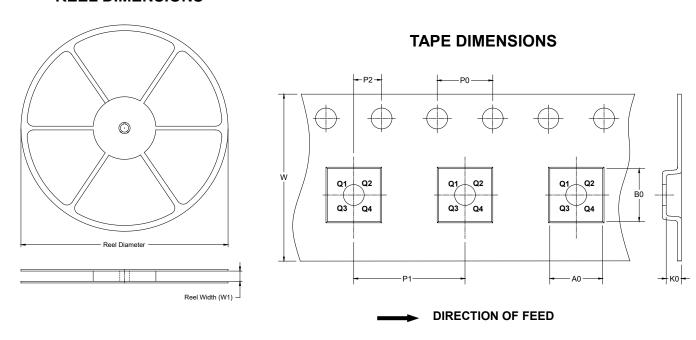
Pull-Up or Pull-Down Resistors on I/O Lines

Each A port I/O has an internal 10kΩ pull-up resistor to V_{CCA} , and each B port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCB}. If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10k\Omega$ resistors). Adding lower value pull-up resistors will affect V_{OL} levels, however. The internal pull-ups of the SGM4576 are disabled when the OE pin is low.


REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

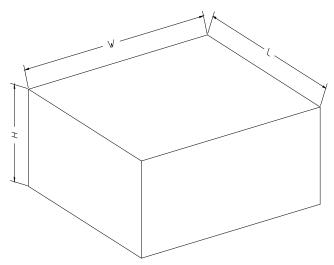
Changes from Original (JUNE 2018) to REV.A


PACKAGE OUTLINE DIMENSIONS TQFN-2.6×1.8-16L

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2.6×1.8-16L	7"	9.0	2.01	2.81	0.93	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18