XC6201 Series

Positive Voltage Regulators

■GENERAL DESCRIPTION

The XC6201 series are highly precise, low power consumption, positive voltage regulators manufactured using CMOS and laser trimming technologies.

The series provides large currents with a significantly small dropout voltage.

The XC6201 consists of a current limiter circuit, a driver transistor, a precision reference voltage and an error amplifier. Output voltage is selectable in 0.1V steps between $1.3V \sim 6.0V$.

SOT-25, SOT-89 and USP-6B packages are available.

■APPLICATIONS

- Smart phones / Mobile phones
- Portable game consoles
- Digital still cameras / Camcorders
- Digital audio equipment
- Reference voltage sources
- Multi-function power supplies

■FEATURES

Maximum Output Current: 250mA (TYP.)Dropout Voltage: 0.16V @ 100mA

: 0.40V @ 200mA

Maximum Operating Voltage : 10V

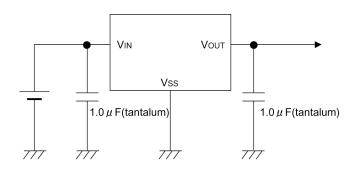
Output Voltage Range : 1.3V ~ 6.0V (0.1V increments)

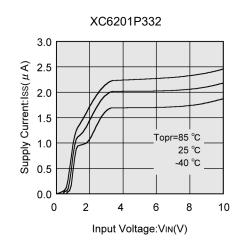
Fixed Voltage Accuracy : $\pm 1\%$ ($V_{OUT(T)} \ge 2.0V$)

±2%

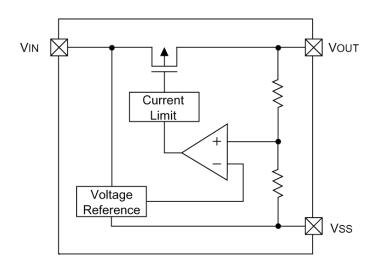
Low Power Consumption $: 2.0 \,\mu$ A (TYP.)Operating Ambient Temperature $: -40^{\circ}\text{C} \sim 85^{\circ}\text{C}$ Packages: SOT-25,

SOT-89 USP-6B

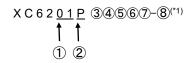

Environmentally Friendly : EU RoHS Compliant, Pb Free


Tantalum or Ceramic Capacitor compatible

■TYPICAL APPLICATION CIRCUIT


■TYPICAL PERFORMANCE CHARACTERISTICS

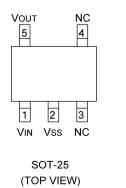
Supply Current vs. Input Voltage

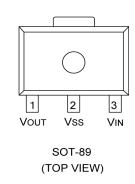


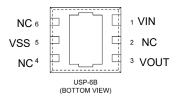
■BLOCK DIAGRAM

■PRODUCT CLASSIFICATION

Ordering Information




DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1	Product Number	01	-
2	Type of Regulator	Р	3-pin regulator
34	Output Voltage	13 ~ 60	e.g. 30:3.0V
			50:5.0V
(5)	Output Voltage Accuracy	1	±1%
9	Output Voltage Accuracy	2	±2%
	Dookogoo	MR-G	SOT-25 (3,000pcs/Reel)
67-8	⑥⑦−⑧ Packages (Order Unit)	PR-G	SOT-89 (1,000pcs/Reel)
		DR-G	USP-6B (3,000pcs/Reel)


^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

^{*} $\pm 1\%$ accuracy can be set at $V_{OUT(T)} \ge 2.0V$.

■PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VSS (No.5) pin.

■ PIN ASSIGNMENT

	PIN NUMBER			FUNCTION	
SOT-25	SOT-89	USP-6B	PIN NAME	FUNCTION	
5	1	3	Vout	Output	
2	2	5	Vss	Ground	
1	3	1	Vin	Power Input	
3, 4	-	2,4,6	NC	No Connection	

■ABSOLUTE MAXIMUM RATINGS

Ta = 25℃

				_
PARAM	PARAMETER SYMB		RATINGS	UNITS
Input V	oltage	V _{IN}	12.0	V
Output (Current	I _{OUT}	500	mA
Output \	Voltage	V _{OUT}	V _{SS} -0.3 ~ V _{IN} +0.3	V
	COT 25		250	
	SOT-25		760 (JESD51-7 board) (*1)	
Power	SOT-89	Pd	500	ma\A/
Dissipation	301-69	Fu	1000 (40mm x 40mm Standard board) (*1)	mW
	LIOD CD		120	
	USP-6B		1000 (40mm x 40mm Standard board) (*1)	
Operating To	Operating Temperature Topr		-40 ~ 85	°C
Storage Temperature Te		Tstg	-55 ~ 125	°C

Each voltage rating is based on Vss.

^(*1) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to PACKAGING INFORMATION for the mounting condition.

■ELECTRICAL CHARACTERISTICS

XC6201P132 V_{OUT(T)}=1.3V ^(*1) Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)} (*2)	V _{IN} =2.3V I _{OUT} =10mA	1.274	1.300	1.326	V	2
Maximum Output Current	I _{OUTmax}	V _{IN} =2.3V V _{OUT(E)} ≧1.17V	60	-	-	mA	2
Load Regulation	ΔVоυт	V _{IN} =2.3V 1mA≦I _{OUT} ≦30mA	-	10	30	mV	2
Dropout Voltage (*3)	Vdif1	I _{OUT} =30mA	-	200	600	m\/	2
Dropout Voltage ()	Vdif2	I _{OUT} =60mA	-	500	810	mV	∠
Supply Current	Iss	V _{IN} =2.3V	-	2.0	5.0	μΑ	1
Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \cdot \Delta V_{\text{OUT}}}$	I _{OUT} =10mA 2.3V≦V _{IN} ≦10.0V	-	0.2	0.3	%/V	2
Input Voltage	Vin		1.8	-	10	V	-
Output Voltage Temperature Characteristics	$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Topr} \cdot \Delta V_{\text{OUT}}}$	I _{OUT} =40mA -40°C≦Topr≦85°C	-	±100	1	ppm/°C	2

XC6201P182 Vout(t)=1.8V (*1) Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)} (*2)	V _{IN} =2.8V IOUT=40mA	1.764	1.800	1.836	V	2
Maximum Output Current	I _{OUTmax}	V _{IN} =2.8V V _{OUT(E)} ≧1.62V	80	-	-	mA	2
Load Regulation	ΔVоυт	V _{IN} =2.8V 1mA≦I _{OUT} ≦40mA	-	10	30	mV	2
Dropout Voltage (*3)	Vdif1	I _{OUT} =40mA	-	200	370	mV	2
Diopout voltage ()	Vdif2	I _{OUT} =80mA	-	450	710	IIIV	3
Supply Current	Iss	V _{IN} =2.8V	-	2.0	5.0	μΑ	1
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot \Delta V_{OUT}}$	I _{OUT} =40mA 2.8V≦V _{IN} ≦10.0V	-	0.2	0.3	%/V	2
Input Voltage	VIN		1.8	-	10	V	-
Output Voltage Temperature Characteristics	$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Topr} \cdot \Delta V_{\text{OUT}}}$	I _{OUT} =40mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	2

XC6201P272 Vout(T)=2.7V (*1) Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)} (*2)	V _{IN} =3.7V	2.646	2.700	2.754	V	2
	- 001(L)	I _{OUT} =40mA				-	0
Maximum Output Current	I _{OUTmax}	V _{IN} =3.7V	100	_	_	mA	2
Maximum Output Gunent	IOUTMax	V _{OUT(E)} ≧2.43V	100	_	1	ША	J)
Load Regulation	ΔVout	V _{IN} =3.7V		15	40	mV	2
Load Regulation	△ VOUT	1mA≦I _{OUT} ≦60mA	-				€
Drangut Voltage (*3)	Vdif1	I _{ОUT} =60mA	-	200	370	mV	2
Dropout Voltage (*3)	Vdif2	I _{ОUТ} =120mA	-	450	710	IIIV	(2)
Supply Current	Iss	V _{IN} =3.7V	-	2.0	5.0	μΑ	1
Line Regulation	ΔV_{OUT}	I _{OUT} =40mA		0.2	0.3	%/V	2
Line Regulation	$\Delta V_{\text{IN}} \cdot \Delta V_{\text{OUT}}$	3.7V≦V _{IN} ≦10.0V	-	0.2	0.3	90/V	(2)
Input Voltage	Vin		1.8	-	10	V	-
Output Voltage	ΔV_{OUT}	I _{OUT} =40mA		1.400		1°0	<u> </u>
Temperature Characteristics	$\Delta \text{Topr} \cdot \Delta V_{\text{OUT}}$	-40°C≦Topr≦85°C	-	±100	-	ppm/°C	2

■ ELECTRICAL CHARACTERISTICS (Continued)

XC6201P332 Vout(T)=3.3V (*1) Ta=25°C

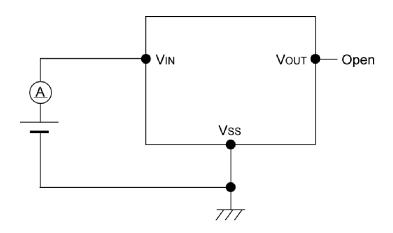
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)} (*2)	V _{IN} =4.3V I _{OUT} =40mA	3.234	3.300	3.366	V	2
Maximum Output Current	I _{OUTmax}	V _{IN} =4.3V V _{OUT(E)} ≧2.97V	150	-	-	mA	2
Load Regulation	ΔV_{OUT}	V _{IN} =4.3V 1mA≦I _{OUT} ≦80mA	-	20	50	mV	2
Dropout Voltage (*3)	Vdif1	I _{оит} =80mA	-	200	360	mV	2
Dropout voltage ()	Vdif2	I _{OUT} =160mA	-	450	700	IIIV	2
Supply Current	I _{SS}	V _{IN} =4.3V	-	2.0	5.0	μΑ	1
Line Regulation	$\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \cdot \Delta V_{\text{OUT}}}$	I _{OUT} =40mA 4.3V≦V _{IN} ≦10.0V	-	0.2	0.3	%/V	2
Input Voltage	V_{IN}		1.8	-	10	V	-
Output Voltage Temperature Characteristics	ΔV_{OUT} $\Delta \text{Topr} \cdot \Delta V_{\text{OUT}}$	I _{OUT} =40mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	2

XC6201P502 V_{OUT(T)}=5.0V (*1) Ta=25°C

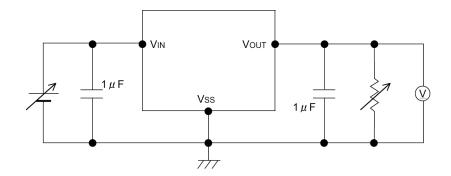
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	Vout(E) (*2)	V _{IN} =6.0V I _{OUT} =40mA	4.900	5.000	5.100	V	2
Maximum Output Current	I _{OUTmax}	VI _N =6.0V V _{OUT(E)} ≧4.57V	200	-	-	mA	2
Load Regulation	ΔVоυт	V _{IN} =6.0V 1mA≦I _{OUT} ≦100mA	1	30	70	mV	2
Dropout Voltage (*3)	Vdif1	I _{OUT} =100mA	1	160	340	mV	2
Diopout voltage ()	Vdif2	I _{OUT} =200mA	1	400	600	IIIV	2
Supply Current	Iss	V _{IN} =6.0V	1	2.0	6.0	μΑ	1
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot \Delta V_{OUT}}$	I _{OUT} =40mA 6.0V≦V _{IN} ≦10.0V	-	0.2	0.3	%/V	2
Input Voltage	Vin		1.8	-	10	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} Δ Topr ·ΔV _{OUT}	I _{OUT} =40mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	2

NOTE:

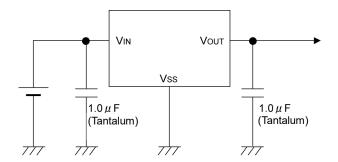
VIN1 :An Input Voltage when V_{OUT1} appears as the input voltage is gradually decreased. V_{OUT1} : A voltage equal to 98% of the output voltage when a stabilized ($V_{OUT(T)} + 1.0V$) is input.


^{*1:} $V_{OUT(T)}$ = Nominal output voltage.

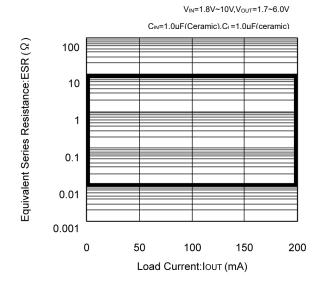
^{*2:} V_{OUT(E)} = Effective output voltage (i.e. the output voltage when "V_{OUT(T)}+1.0V" is provided while maintaining a certain I_{OUT} value).


^{*3:} Vdif = (V_{IN1}- V_{OUT1})

TEST CIRCUITS


Circuit ① : Supply Current

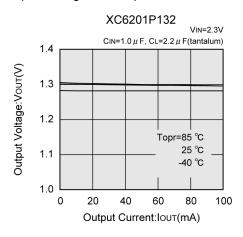
Circuit ②: Output Voltage, Oscillation, Line Regulation, Dropout Voltage, Load Regulation



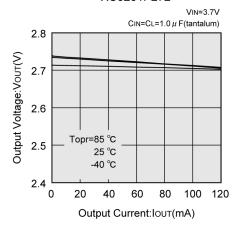
■OPERATIONAL EXPLANATION

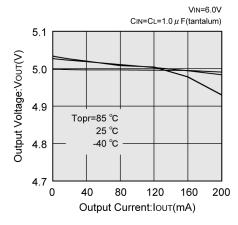
With the XC6201 series regulator, in order to ensure the stabilized output voltage, we suggest that an output capacitor (C_L) of 1 μ F or more be connected between the output pin (V_{OUT}) and the V_{SS} pin. For using low ESR capacitor (e.g. ceramic capacitors), please make sure that the output voltage is more than 1.7V. When the output voltage is from 1.3V to 1.6V, the output capacitor should be a tantalum capacitor with a capacitance of 2.2 μ F. We also suggest an input capacitor (C_{IN}) should be connected between the V_{IN} and the V_{SS} in order to stabilize input power source.

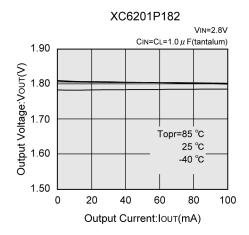
OUTPUT VOLTAGE	Cin	CL (TANTALUM)	CL (LOW ESR)
1.3V ~ 1.6V	1.3V ~ 1.6V ≥1.0 μ F		-
1.7V ~ 6.0V ≧1.0 μ F		≧1.0 <i>μ</i> F	≧1.0 <i>μ</i> F

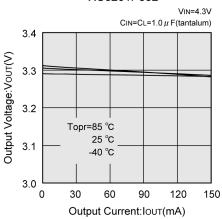

XC6201 Series

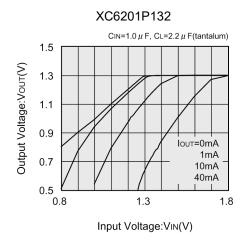
■ NOTE ON USE

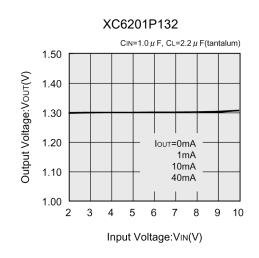

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded. When a voltage higher than the V_{IN} flows to the V_{OUT} like when using two power supplies, please connect a Schottky barrier diode between the V_{OUT} and the V_{IN} and do not exceed the V_{OUT} rating.
- 2. An oscillation may occur by the impedance between a power supply and the input of the IC. Where the impedance is $10\,\Omega$ or more, please use an input capacitor (C_{IN}) of at least $1\,\mu$ F. In case of high output current, operation can be stabilized by increasing the input capacitor value. Also an oscillation may occur if the input capacitor value is smaller than the input impedance when the output capacitance (C_{L}) is large. In such cases, operations can be stabilized by either increasing the input capacitor value or reducing the output capacitor value.
- 3. Please ensure that output current (I_{OUT}) is less than Pd / (V_{IN} V_{OUT}) and do not exceed the rated power dissipation value (Pd) of the package.

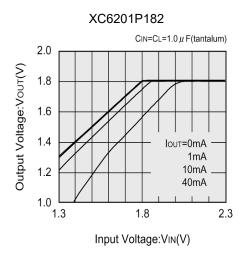

■TYPICAL PERFORMANCE CHARACTERISTICS

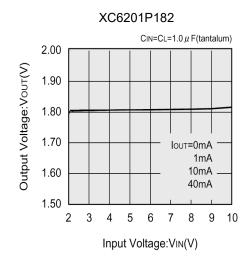

(1) Output Voltage vs. Output Current

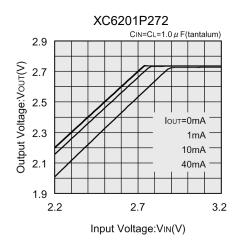

XC6201P272

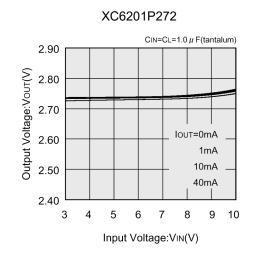


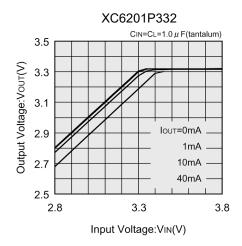


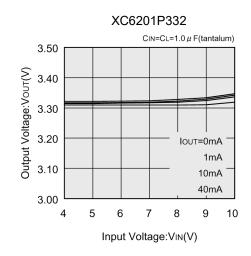


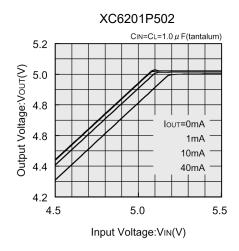


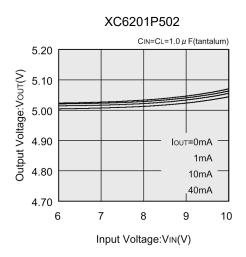

(2) Output Voltage vs. Input Voltage



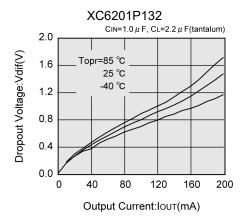


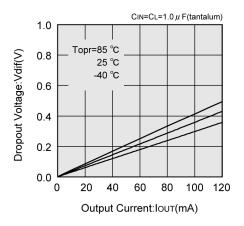


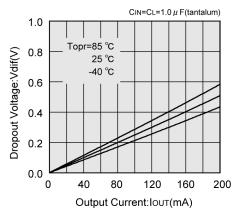


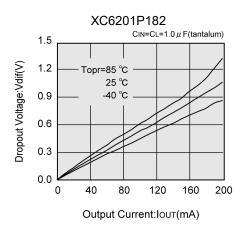


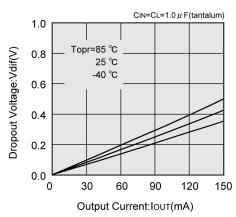
(2) Output Voltage vs. Input Voltage (Continued)

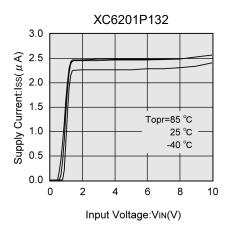


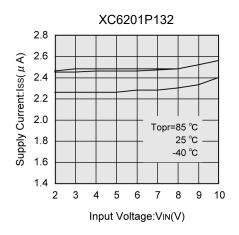


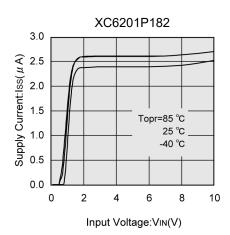

(3) Dropout Voltage vs. Output Current

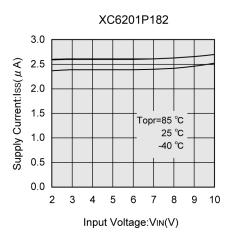


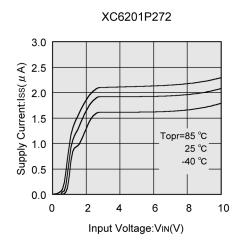

XC6201P272

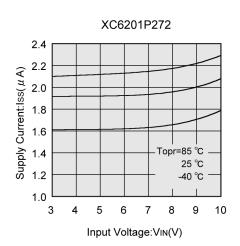

XC6201P502

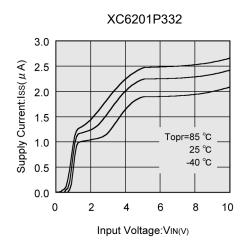


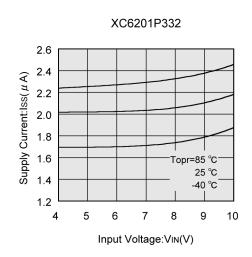


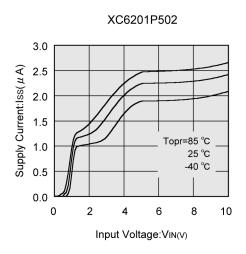


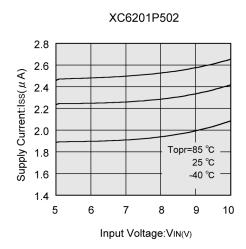

(4) Supply Current vs. Input Voltage



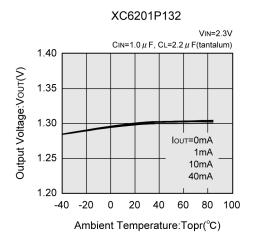


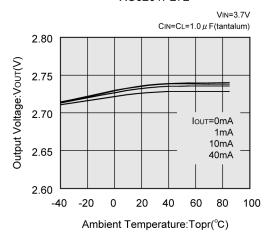


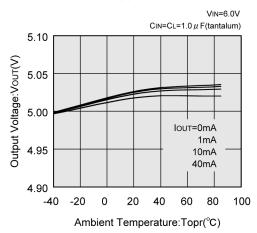


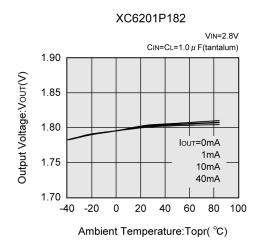


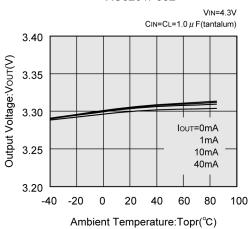
(4) Supply Current vs. Input Voltage (Continued)

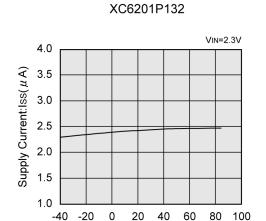


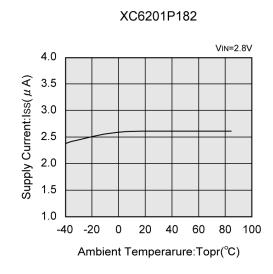


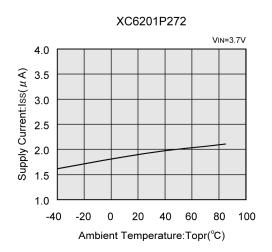


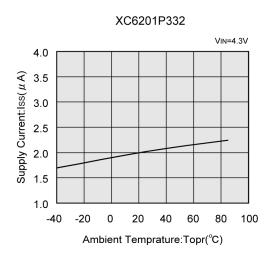

(5) Output Voltage vs. Ambient Temperature

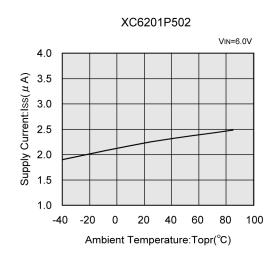

XC6201P272



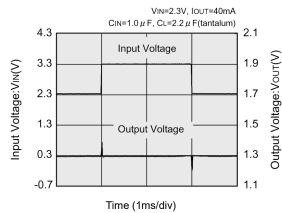


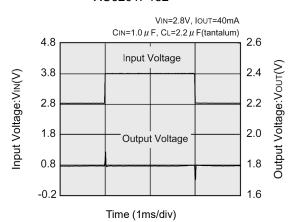



(6) Supply Current vs. Ambient Temperature

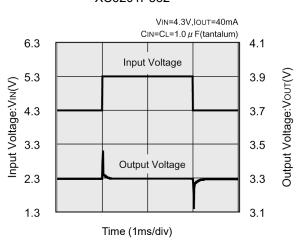


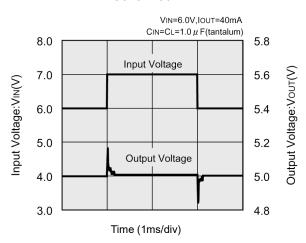
Ambient Temperature:Topr(°C)



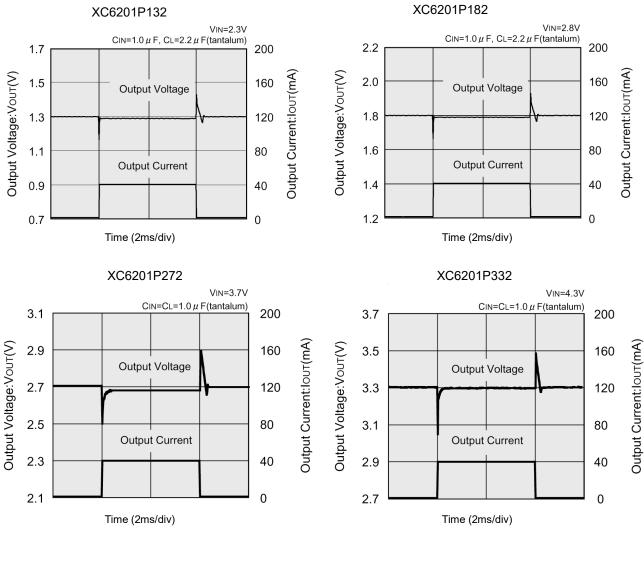


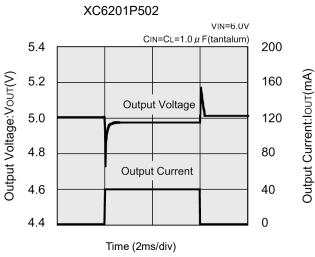
(7) Input Transient Response

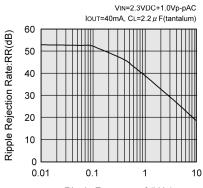

XC6201P182

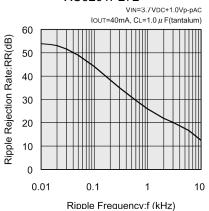


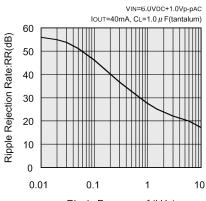
XC6201P272




XC6201P332

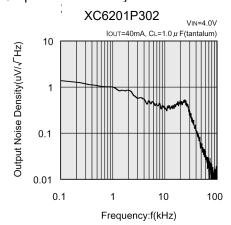

(8) Load Transient Response


(9) Ripple Rejection Rate

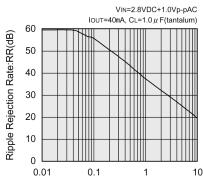


Ripple Frequency:f (kHz)

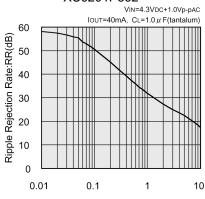
XC6201P272



XC6201P502



Ripple Frequency:f (kHz)

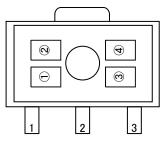

(10) Output Noise Density

XC6201P182

Ripple Frequency:f (kHz)

Ripple Frequency:f (kHz)

XC6201 Series


■PACKAGING INFORMATION

For the latest package information go to, www.torexsemi.com/technical-support/packages

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS
SOT-25	SOT-25 PKG	SOT-25 Power Dissipation
SOT-89	SOT-89 PKG	SOT-89 Power Dissipation
USP-6B	USP-6B PKG	USP-6B Power Dissipation

■MARKING RULE

●SOT-89, SOT-25


① represents the product series

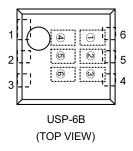
MARK	PRODUCT SERIES
1	XC6201xxxxxx

${\Large \textcircled{2}} \ \ \text{represents type of regulator}$

MA	RK	PRODUCT SERIES
Voltage= 0.1 ~ 3.0V Voltage= 3.1 ~ 6.0V		PRODUCT SERIES
5	6	XC6201Pxxxxx
8	9	XC6201TxxxPx

SOT-89 (TOP VIEW)

SOT-25 (TOP VIEW)


③ represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OUTPUT VOLTAGE (V)		
0	_	3.1	_	F	1.6	4.6	_
1	ı	3.2	_	Н	1.7	4.7	1
2	I	3.3	_	K	1.8	4.8	I
3	ı	3.4	_	L	1.9	4.9	1
4	ı	3.5	_	М	2.0	5.0	1
5	I	3.6	_	N	2.1	5.1	I
6	ı	3.7	_	Р	2.2	5.2	1
7	1	3.8	_	R	2.3	5.3	1
8	ı	3.9	_	S	2.4	5.4	1
9	I	4.0	_	T	2.5	5.5	I
Α	ı	4.1	_	U	2.6	5.6	I
В	ı	4.2	_	V	2.7	5.7	I
С	1.3	4.3	_	Х	2.8	5.8	
D	1.4	4.4	_	Υ	2.9	5.9	-
Е	1.5	4.5	_	Z	3.0	6.0	_

④ represents assembly lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

■MARKING RULE (Continued)

●USP-6B

12 represents product series

3 represents type of regulator

MARK	TYPE	PRODUCT SERIES	
Р	3pin Regulator	XC6201PxxxDx	
T VIN=7V(Rated)		XC6201TxxxDx	

45 represents output voltage

MA	RK	VOLTAGE (V)	PRODUCT SERIES	
4	5	VOLIAGE (V)		
3	3	3.3	XC6201x33xDx	
5	0	5.0	XC6201x50xDx	

⑥ represents assembly lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

- The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- 9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.