

SGM51622S8/SGM51652S8 8-Channel, 16-Bit, Bipolar Input Simultaneous Sampling ADC

GENERAL DESCRIPTION

The SGM51622S8 and SGM51652S8 are 16-bit, 8-channel simultaneous sampling, high-precision successive approximation (SAR) analog-to-digital converters (ADCs).

These ADCs are powered by a single unipolar 5V, and support true bipolar $\pm 10V$ and $\pm 5V$ inputs. The input range is configured by hardware pin.

These chips provide over-voltage protection up to $\pm 20 \text{V}$ at the input.

These chips have an on-chip high accuracy and low drift 10ppm reference.

The input impedance of these chips is $\sim 1M\Omega$ and it is independent of input range selection.

These ADCs support both high-speed serial and parallel interfaces.

The SGM51622S8 and SGM51652S8 are available in a Green LQFP-10×10-64L package. They are all specified from -40°C to +125°C.

FEATURES

- 8 Channels Simultaneous Sampling
 - SGM51652S8 Supports 500kSPS on All Channels Simultaneously
 - SGM51622S8 Supports 250kSPS on All Channels Simultaneously
- True Bipolar Analog Input Ranges: ±10V, ±5V
- Single 5V Analog Supply and 2.7V to 5V V_{DRIVE}
- Input Buffer with 1MΩ Analog Input Impedance
- On-Chip Accurate Reference and Reference Buffer
- Configurable Oversampling Capability with Digital Filter
- Flexible Parallel Interface or Serial Interface
 SPI-Compatible
- Performance
 - SNR: 91.2dB (TYP), THD: -106dB (TYP)
 - INL: ±1.5LSB (TYP), DNL: +1LSB/-0.65LSB (TYP)
 - TBDkV ESD Rating on Analog Input Channels
- Operating Temperature Range: -40°C to +125°C
- Available in a Green LQFP-10×10-64L Package

APPLICATIONS

Power-Line Monitoring and Protection Systems Instrumentation and Control Systems Multi-Axis Sensor Systems

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM51622S8	LQFP-10×10-64L	-40°C to +125°C	SGM51622S8XLFH64G/TR	SGM51622S8 XLFH64 XXXXX	Tape and Reel, 1500
SGM51652S8	LQFP-10×10-64L	-40°C to +125°C	SGM51652S8XLFH64G/TR	SGM51652S8 XLFH64 XXXXX	Tape and Reel, 1500

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Vendor Code

Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

AV _{CC} to AGND	0.3V to 6V
V _{DRIVE} to AGND	
Analog Input Voltage to AGND (1)	±20V
Digital Input Voltage to AGND	
Digital Output Voltage to AGND	0.3V to V _{DRIVE} + 0.3V
REFIN to AGND	-0.3V to AV _{CC} + 0.3V
Input Current to Any Pin except Su	pplies ⁽¹⁾ ±10mA
Package Thermal Resistance	
LQFP-10×10-64L, θ _{JA}	TBD°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s))+260°C

NOTE:

1. Transient currents of up to 100mA do not cause SCR latch-up.

RECOMMENDED OPERATING CONDITIONS

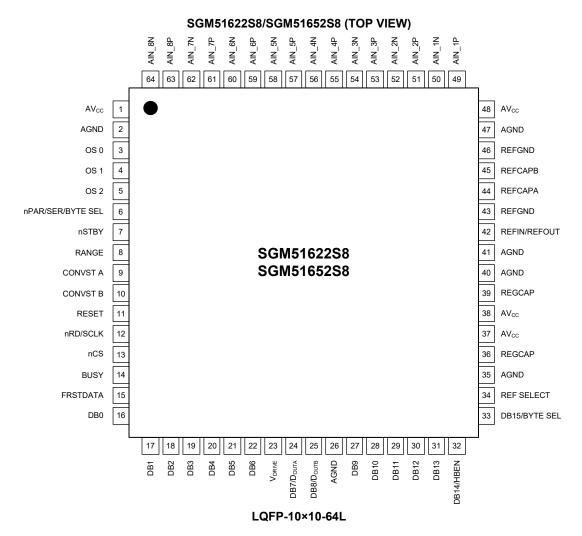
Operating Temperature Range-40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.


DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

8-Channel, 16-Bit, Bipolar Input Simultaneous Sampling ADC

PIN CONFIGURATION

SG Micro Corp

PIN DESCRIPTION

PIN	NAME	TYPE ⁽¹⁾	FUNCTION
1, 37, 38, 48	AV _{CC}	Р	Analog Power Supply Pin. It is the power supply of analog front end and ADC core circuit. It is the reference to AGND pin.
2, 26, 35, 40, 41, 47	AGND	Р	Analog Ground Pin. All AGND pins must share the same system connection plane.
3	OS 0		
4	OS 1	DI	Oversampling Mode Setting Pins. They are logic input control pins. More details please refer to Table 4.
5	OS 2		
	nPAR/SER/		Parallel/Serial/Byte Interface Setting Pin. It is a logic input. If it is set to logic low, the parallel interface is enabled. If it is set to logic high, the serial interface is enabled. To select byte parallel interface, set the pin to logic high and DB15/BYTE SEL pin to logic high at the same time for a combined enable controlling (refer to Table 3).
6	BYTE SEL	DI	If the chip works in serial mode, the nRD/SCLK pin is the serial interface clock input pin. The DB7/D _{OUTA} pin and DB8/D _{OUTB} pin are combined together as two lane serial interface data output pins. The DB[15:9] and DB[6:0] pins should be connected to GND.
			If the chip works in byte parallel interface mode, DB14 is used as the HBEN pin. DB[7:0] is read out in two nRD read frame. The data format is high byte first.
7	nSTBY	DI	Standby Mode Setting Input Pin. This pin is a logic input pin. It works with the RANGE pin together to determine which power-down mode the chip is going to enter standby mode or shutdown mode. More details please refer to Table 2.
8	RANGE	DI	Analog Input Range Setting Pin. This pin is a logic input pin. If it is set to logic high, the analog input range $\pm 10V$ is set for all channels. If it is set to logic low, the analog input range $\pm 5V$ is set for all channels. Any change on the logic of the input range setting pin is effect immediately. It is strongly not recommended to change the input range during a conversion or a consequences inputs scanning.
9	CONVST A		Conversion Start Input Pin A and Conversion Start Input Pin B. They are logic input pins. When the input logic from low to high, the input tracking and holding circuitry stops sampling and changes to hold, and ADC initiates a conversion.
		DI	CONVST A and CONVST B can be tied together for all channels sampling simultaneously.
10	CONVST B		When the oversampling function is not enabled, CONVST A and CONVST B can be used to control ADC conversion separately. CONVST A can be used to control channel V1, V2, V3 and V4. CONVST B can be used to control channel V5, V6, V7 and V8.
11	RESET	DI	Reset Input Pin. An input from logic low to logic high, the rising edge of the input signal triggers the reset action, and the high pulse must be hold at least 50ns.
			Reset input will terminate the ongoing ADC conversion. And the reset input also will set the ADC output registers to all zero.
12	nRD/SCLK	DI	Multi-Function Pin nRD/SCLK. When the chip is in parallel interface mode, the nRD/SCLK is active logic low. When the chip is in serial interface mode, the nRD/SCLK is active logic low. The data on data bus are locked out on the rising edge of SCLK. For more information, see the Conversion Control section.

PIN DESCRIPTION (continued)

PIN	NAME	TYPE ⁽¹⁾	FUNCTION
13	nCS	DI	Chip Select Control Pin. This pin is active logic low. In serial interface mode, the nCS is used as data frame signal, and the MSB of the serial output is shifted out on the falling edge of nCS.
14	BUSY DO		Busy Indicator Output Pin. If there is a trigger rising edge of CONVST A or CONVST B, this BUSY pin goes to high immediately. It does not go to low until all the channels conversions have been completed. The falling edge of the BUSY pin indicates that the conversion results are read to read (it needs a reasonable time delay t ₄).
			Any data read operation must be finished before the next falling edge of BUSY coming. During the high of BUSY, any ADC trigger signals of CONVST A and CONVST B are ignored.
			Digital Indicator Output Pin. This pin is active high.
15	EBSTDATA	DO	In parallel interface mode, the falling edge of nRD which is corresponded to read V1 channel sets the FRSTDATA pin high, and the next following edge of nRD sets the FRSTDATA pin low.
15	FRSTDATA DO		In serial interface mode, the falling edge of nCS sets the FRSTDATA pin high. In the same read operation frame, the 16 th SCLK falling edge sets the FRSTDATA pin low.
			If nCS is high, the FRSTDATA pin is in three-state.
16, 17, 18, 19, 20, 21, 22	DB0, DB1, DB2, DB3, DB4, DB5, DB6	DO	Parallel Output Data Bits. In serial interface mode, these pins should be connected to AGND.
23	V _{DRIVE}	Р	Login Interface Power Supply Pin.
24	DB7/D _{OUTA}	DO	Multi-Function Pin, Parallel Interface Output Data Bit 7 (DB7)/Serial Interface Data Output Pin (D_{OUTA}).
24	DBIIDOUTA	DO	In parallel interface mode, this pin works as DB7. In serial interface mode, this pin works as D_{OUTA} .
25	DB8/D _{OUTB}	DO	Multi-Function Pin, Parallel Interface Output Data Bit 8 (DB8)/Serial Interface Data Output Pin (D _{OUTB}).
23	DD0/D001B	DO	In parallel interface mode, this pin works as DB8. In serial interface mode, this pin works as D_{OUTB} .
27, 28,	DB9, DB10,		Parallel Output Data Bits.
29, 30, 31	DB11, DB12, DB13	DO	In byte parallel interface mode and serial interface mode (nPAR/SER/BYTE SEL = 1), these pins should be connected to AGND.
			Multi-Function Pin, Parallel Interface Output Data Bit 14 (DB14)/High Byte Enable (HBEN).
32	DB14/HBEN	DO/DI	In parallel interface mode, this pin works as DB14. In parallel byte interface mode, this pin is used to select if the most significant byte (MSB) or the least significant byte (LSB) of the data is output first. If HBEN is set to high, MSB is first out. If HBEN is set to low, LSB is first out. In serial mode, this pin should be tied to GND.

PIN DESCRIPTION (continued)

PIN	NAME	TYPE ⁽¹⁾	FUNCTION
			Multi-Function Pin, Parallel Interface Output Data Bit 15 (DB15)/Parallel Interface Byte Mode Select (BYTE SEL).
33	DB15/	DO/DI	In parallel interface mode, this pin works as DB15.
	BYTE SEL		If nPAR/SER/BYTE SEL is set to high and DB15/BYTE SEL is set to low, the chip works in serial interface mode. If nPAR/SER/BYTE SEL is set to high and DB15/BYTE SEL is set to high, the chip works in parallel byte interface mode.
34	REF SELECT	DI	Internal/External Reference Selection Pin. This is a logic input pin. If it is set to logic high, the internal reference is enabled. If it is set to logic low, an external reference must be connected to the chip.
36, 39	REGCAP	Р	Internal Regulator Decoupling Pins. Each pin needs a separate 1µF decoupling capacitor connected to AGND.
42	REFIN/REFOUT	REF	Reference Input Pin (REFIN)/Reference Output Pin (REFOUT). A 10μF decoupling capacitor needs to be connected between this pin and REFGND.
43, 46	REFGND	REF	Reference Ground Pins. These pins should be connected to AGND.
44, 45	REFCAPA, REFCAPB	REF	Reference Buffer Output Sense Pins. These pins must be tied together. A 10µF decoupling capacitor needs to be connected between these pins and AGND.
49	AIN_1P	AI	Channel 1 Positive Analog Input.
50, 52	AIN_1N, AIN_2N	AI	Channel 1 and Channel 2 Negative Analog Inputs.
51	AIN_2P	AI	Channel 2 Positive Analog Input.
53	AIN_3P	AI	Channel 3 Positive Analog Input.
54	AIN_3N	AI	Channel 3 Negative Analog Input.
55	AIN_4P	AI	Channel 4 Positive Analog Input.
56	AIN_4N	AI	Channel 4 Negative Analog Input.
57	AIN_5P	AI	Channel 5 Positive Analog Input.
58	AIN_5N	AI	Channel 5 Negative Analog Input.
59	AIN_6P	AI	Channel 6 Positive Analog Input.
60	AIN_6N	AI	Channel 6 Negative Analog Input.
61	AIN_7P	AI	Channel 7 Positive Analog Input.
62	AIN_7N	AI	Channel 7 Negative Analog Input.
63	AIN_8P	AI	Channel 8 Positive Analog Input.
64	AIN_8N	AI	Channel 8 Negative Analog Input.

NOTE:

1. P = Power Supply, DI = Digital Input, DO = Digital Output, REF = Reference Input/Output, AI = Analog Input.

ELECTRICAL CHARACTERISTICS

(V_{REF} = 2.5V external/internal, AV_{CC} = 4.75V to 5.25V, V_{DRIVE} = 2.7V to 5.25V, f_{SAMPLE} = 250kSPS, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
Dynamic Performance (f _{IN} = 1kHz s	ine wave, un	less otherwise noted)		•				
		Oversampling by 16, ±	10V range, f _{IN} = 130Hz		91.2			
		Oversampling by 16, ±	5V range, f _{in} = 130Hz		91			
Signal-to-Noise Ratio ⁽¹⁾	SNR	No oversampling, ±10	/ range		89.9		dB	
		No oversampling, ±5V	range		89.3			
		No oversampling, ±10	/ range		89.8			
Signal-to-Noise + Distortion	SINAD	No oversampling, ±5V	range		89.2		dB	
		No oversampling, ±10	/ range		91			
Dynamic Range		No oversampling, ±5V	range		91		dB	
Total Harmonic Distortion	THD				-106		dB	
Peak Harmonic or Spurious Noise	SFDR				-109		dB	
			Second-order terms		-115			
Intermodulation Distortion	IMD	$f_A = 1$ kHz, $f_B = 1.1$ kHz	Third-order terms		-105		dB	
Analog Input Filter					1			
			±10V range		24			
	BW	-3dB	±5V range		24		1	
Full Power Bandwidth			±10V range		4		kHz	
		-0.1dB	±5V range		4			
DC Accuracy	•			•				
Resolution		No missing codes		16			Bits	
Differential Nonlinearity	DNL				+1/-0.65		LSB (2)	
Integral Nonlinearity	INL				±1.5		LSB	
Tabel I have diverse at Frances	THE	±10V range			±12			
Total Unadjusted Error	TUE	±5V range			±13		LSB	
Positive Full-Scale Error ⁽³⁾		External reference			±9			
Positive Full-Scale Error		Internal reference			±9		LSB	
Desitive Full Seele Freer Drift		External reference			3		n n n 190	
Positive Full-Scale Error Drift		Internal reference			7		ppm/°C	
Desitive Full Cools Free Matching		±10V range			6			
Positive Full-Scale Error Matching		±5V range			6		LSB	
		±10V range			±2		LSB	
Bipolar Zero-Code Error ⁽⁴⁾	± 5V range				±3		LOD	
Pipelar Zaro Codo Error Drift		±10V range			8			
Bipolar Zero-Code Error Drift		± 5V range			20		μV/°C	
Pipolor Zoro Codo Error Matching		±10V range			2			
Bipolar Zero-Code Error Matching		±5V range			3		LSB	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{REF} = 2.5V \text{ external/internal}, AV_{CC} = 4.75V \text{ to } 5.25V, V_{DRIVE} = 2.7V \text{ to } 5.25V, f_{SAMPLE} = 250kSPS, Full = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ typical values are at } T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
(3)		External reference		±9		
Negative Full-Scale Error ⁽³⁾		Internal reference		±9		LSB
		External reference		3		100
Negative Full-Scale Error Drift		Internal reference		7		ppm/°C
		±10V range		6		1.05
Negative Full-Scale Error Matching		±5V range		6		LSB
Analog Input		•				
Innuit Valtaga Dangaa	V	RANGE = 1			±10	v
Input Voltage Ranges	V _{IN}	RANGE = 0			±5	v
Analog Input Current		10V		7.3		
Analog Input Current		5V		2.8		μA
Input Capacitance ⁽⁵⁾	C _{IN}			5		pF
Input Impedance	R _{IN}	See the Analog Input section		1		MΩ
Input Over-Voltage Protection						
Quar Valtage Protection Valtage	N/	AVDD = 5V or offers low impedance < $30k\Omega$, all input ranges	-20		+20	V
Over-Voltage Protection Voltage	V _{OVP}	AVDD = floating with impedance > $30k\Omega$, all input ranges	-11		+11	V
Reference Input/Output						
Reference Input Voltage Range	V_{REF}	See the ADC Transfer Function section	2.475	2.5	2.525	V
DC Leakage Current				±0.1		μΑ
Input Capacitance ⁽⁵⁾		REF SELECT = 1		6		pF
Reference Output Voltage		REFIN/REFOUT		2.5		V
Reference Temperature Coefficient				±8		ppm/°C
Logic Inputs						
Input High Voltage	V _{IH}		0.8 × V _{DRIVE}			V
Input Low Voltage	V _{IL}				0.2 × V _{DRIVE}	V
Input Current	I _{IN}			±0.1	BRIVE	μA
Input Capacitance ⁽⁵⁾	CIN			5		pF
Logic Outputs					1	
Output High Voltage	V _{OH}	I _{SOURCE} = 100µA	V _{DRIVE} - 0.2			V
Output Low Voltage	V _{OL}	I _{SINK} = 100μA			0.2	V
Floating-State Leakage Current				±0.1		μA
Floating-State Output Capacitance ⁽⁵⁾				5		pF
Output Coding		Two's complement				
Conversion Rate		· · · ·				
Conversion Time	t _{conv}	All eight channels included, see Timing Specifications section		2		μs
Track-and-Hold Acquisition Time	t _{ACQ}			2		μs
Throughput Rate		Per channel, all eight channels included			250	kSPS

ELECTRICAL CHARACTERISTICS (continued)

(V_{REF} = 2.5V external/internal, AV_{CC} = 4.75V to 5.25V, V_{DRIVE} = 2.7V to 5.25V, f_{SAMPLE} = 250kSPS, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
Power Requirements		•					
Analog Supply Voltage	AV _{CC}			4.75		5.25	V
Digital I/O Supply Voltage	V _{DRIVE}			2.7		AV _{CC}	V
			Normal mode (static)		22.2		mA
I _{TOTAL}		Digital inputs = 0V or V _{DRIVE}	Normal mode (operational) ⁽⁶⁾ , f _{SAMPLE} = 250kSPS		33		mA
			Standby mode		9.2		mA
			Shutdown mode		16		μA
Power Dissipation	·	·	·				
		Normal mode (static)		111		mW
Power Dissipation	PD	Normal mode (operational) ⁽⁶⁾ , f _{SAMPLE} = 250kSPS			165		mW
,		Standby mode			46		mW
		Shutdown mode			90		μW

NOTES:

1. This specification applies when reading during a conversion or after a conversion. If reading during a conversion in parallel mode with V_{DRIVE} = 5V, SNR typically reduces by 1.5dB and THD by 3dB.

2. LSB = Least Significant Bit. 1LSB = 152.58µV in the ±5V input range. 1LSB = 305.175µV in the ±10V input range.

3. These specifications include the full temperature range variation and contribution from the internal reference buffer, but exclude the error contribution from the external reference.

4. Bipolar zero-code error is calculated with respect to the analog input voltage. Refer to the Analog Input Clamp Protection section.

5. Test samples at initial release to ensure compliance.

6. Operational power/current figure includes contribution when running in oversampling mode.

TIMING SPECIFICATIONS

 $(AV_{CC} = 4.75V \text{ to } 5.25V, V_{DRIVE} = 2.7V \text{ to } 5.25V, V_{REF} = 2.5V \text{ external reference/internal reference, Full} = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Parallel/Serial/Byte Mode						
1/Throughput Rate	t ₄ /t _{CYCLE}	Parallel mode, reading during or after conversion, or serial mode: V_{DRIVE} = 3.3V to 5.25V, reading during a conversion using D_{OUTA} and D_{OUTB} lines			4	μs
		Serial mode reading after a conversion, $V_{DRIVE} = 2.7V$		7.3		
		Oversampling off		2		
		Oversampling by 2		5.8		
		Oversampling by 4		13.4		
Conversion Time	t _{CONV}	Oversampling by 8		28.6		μs
		Oversampling by 16		59		
		Oversampling by 32		120		
		Oversampling by 64		242		
nSTBY Rising Edge to CONVST x Rising Edge, Power-Up Time from Standby Mode	twake-up standby			360		μs
nSTBY Rising Edge to CONVST x Rising Edge, Power-Up Time from Shutdown Mode	twake-up shutdown	Internal reference External reference		17 17		ms
RESET High Pulse Width	t ₁		50			ns
BUSY to OS x Pin Setup Time	tos setup		50			ns
BUSY to OS x Pin Hold Time	t _{os_HOLD}		25			ns
CONVST x High to BUSY High	t ₆				40	ns
Minimum CONVST x Low Pulse	t ₃		25			ns
Minimum CONVST x high pulse	t ₅		25			ns
BUSY Falling Edge to nCS Falling Edge Setup Time	t ₇		0			ns
Maximum Delay Allowed between CONVST A and CONVST B Rising Edges ⁽²⁾	t ₃₀				0.5	ms
Maximum Time between Last nCS Rising Edge and BUSY Falling Edge	t ₈				25	ns
Minimum Delay between RESET Low to CONVST x Low	t ₂		25			ns
Parallel/Byte Read Operation						
nCS to nRD Setup Time	t ₉		0			ns
nCS to nRD Hold Time	t ₁₂		0			ns
		V _{DRIVE} above 4.75V	18			
nRD Low Pulse Width	t ₁₀	V _{DRIVE} above 3.3V	20		ns	
		V _{DRIVE} above 2.7V	20			

TIMING SPECIFICATIONS (continued)

 $(AV_{CC} = 4.75V \text{ to } 5.25V, V_{DRIVE} = 2.7V \text{ to } 5.25V, V_{REF} = 2.5V \text{ external reference/internal reference, Full = -40°C to +125°C, unless otherwise noted.)$

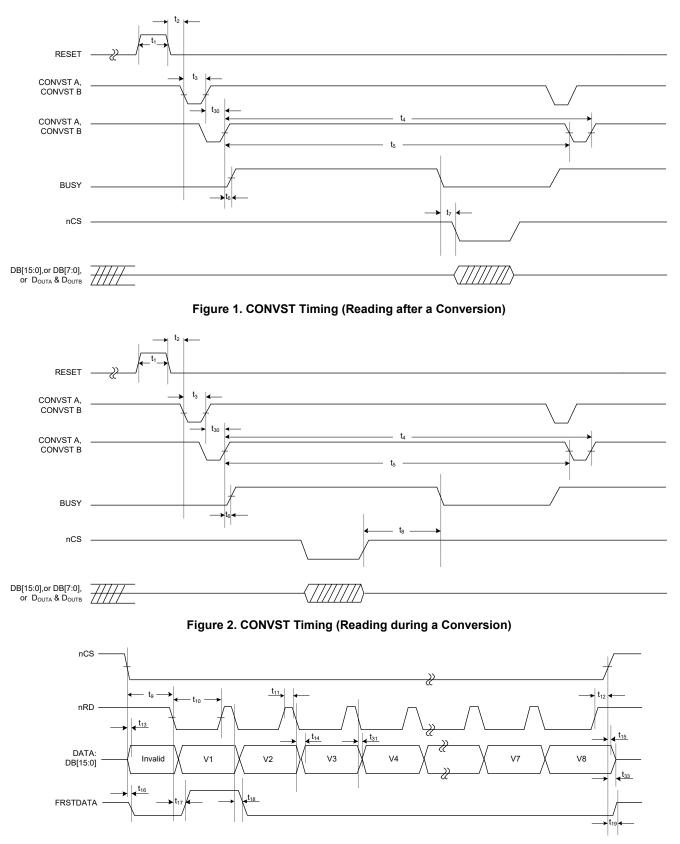
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
nRD High Pulse Width	t ₁₁		16			ns
nCS High Pulse Width, nCS and nRD Linked	t ₂₉	See Figure 4	20			ns
		V _{DRIVE} above 4.75V			16	
Delay from nCS until DB[15:0] Three-State Disabled	t ₁₃	V _{DRIVE} above 3.3V			20	ns
		V _{DRIVE} above 2.7V			25	
		V _{DRIVE} above 4.75V			16	
Data Access Time after nRD Falling Edge ⁽³⁾	t ₁₄	V _{DRIVE} above 3.3V			20	ns
		V _{DRIVE} above 2.7V			25	
Data Hold Time after nRD Falling Edge	t ₃₁		6			ns
nCS to DB[15:0] Hold Time	t ₃₂		12			ns
Delay from nCS Rising Edge to DB[15:0] Three-State Enabled	t ₃₃				25	ns
Serial Read Operation						
		V_{DRIVE} above 4.75V			25	
Frequency of Serial Read Clock	f _{sclk}	V _{DRIVE} above 3.3V			22	MHz
		V _{DRIVE} above 2.7V			20	
Delay from nCS until Douta/Doute		V _{DRIVE} above 4.75V			16	
Three-State Disabled/Delay from nCS	t ₂₂	V _{DRIVE} above 3.3V			18	ns
until MSB Valid		V _{DRIVE} above 2.7V			20	
		V _{DRIVE} above 4.75V			16	
Data Access Time after SCLK Rising Edge ⁽³⁾	t ₂₃	V _{DRIVE} above 3.3V			18	ns
		V _{DRIVE} above 2.7V			20	
SCLK Low Pulse Width	t ₂₁		0.4 × t _{SCLK}			ns
SCLK High Pulse Width	t ₂₀		0.4 × t _{SCLK}			ns
SCLK Rising Edge to D _{OUTA} /D _{OUTB} Valid Hold Time	t ₂₄		6			ns
nCS Rising Edge to D _{OUTA} /D _{OUTB} Three-State Enabled	t ₂₅				25	ns

TIMING SPECIFICATIONS (continued)

 $(AV_{CC} = 4.75V \text{ to } 5.25V, V_{DRIVE} = 2.7V \text{ to } 5.25V, V_{REF} = 2.5V \text{ external reference/internal reference, Full = -40°C to +125°C, unless otherwise noted.})$ ⁽¹⁾

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
FRSTDATA Operation		· ·					
		V _{DRIVE} above 4.75V			15		
Delay from nCS Falling Edge until FRSTDATA Three-State Disabled	t ₁₆	V _{DRIVE} above 3.3V			20	ns	
		V _{DRIVE} above 2.7V			25		
		V _{DRIVE} above 4.75V			15		
Delay from nCS Falling Edge until FRSTDATA High, Serial Mode	t ₂₆	V _{DRIVE} above 3.3V			20	ns	
		V _{DRIVE} above 2.7V			25		
	t ₁₇	V _{DRIVE} above 4.75V			15		
Delay from nRD Falling Edge to FRSTDATA High		V _{DRIVE} above 3.3V			20	ns	
		V _{DRIVE} above 2.7V			25		
Delay from nRD Falling Edge to	+	V _{DRIVE} = 3.3V to 5.25V			15		
FRSTDATA Low	t ₁₈	V _{DRIVE} = 2.7V to 3.3V			18	ns	
Delay from 16 th SCLK Falling Edge to	+	V _{DRIVE} = 3.3V to 5.25V			15		
FRSTDATA Low	t ₂₇	V _{DRIVE} = 2.7V to 3.3V			18	ns	
Delay from nCS Rising Edge until FRSTDATA Three-State Enabled	t ₁₉				22	ns	

NOTES:


1. Sample tested during initial release to ensure compliance. All input signals are specified with $t_R = t_F = 5ns$ (10% to 90% of V_{DRIVE}) and timed from a voltage level of 1.6V.

2. The delay between the CONVST x signals was measured as the maximum time allowed while ensuring a < 10LSB performance matching between channel sets.

3. A buffer is used on the data output pins for these measurements, which is equivalent to a 20pF load on the output pins.

TIMING DIAGRAMS

SG Micro Corp

TIMING DIAGRAMS (continued)

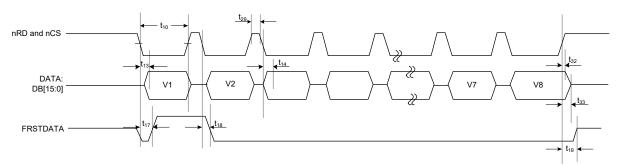


Figure 4. nCS and nRD, Linked Parallel Mode

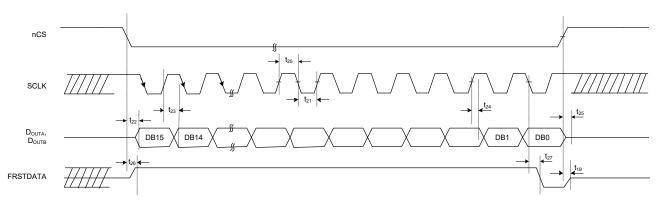
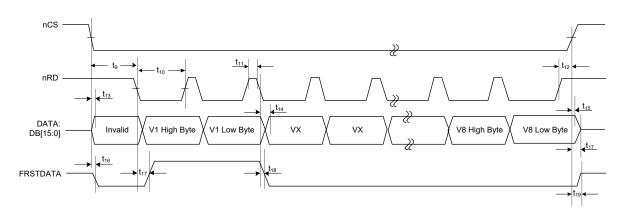
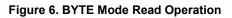




Figure 5. Serial Read Operation (Channel 1)

FUNCTIONAL BLOCK DIAGRAM

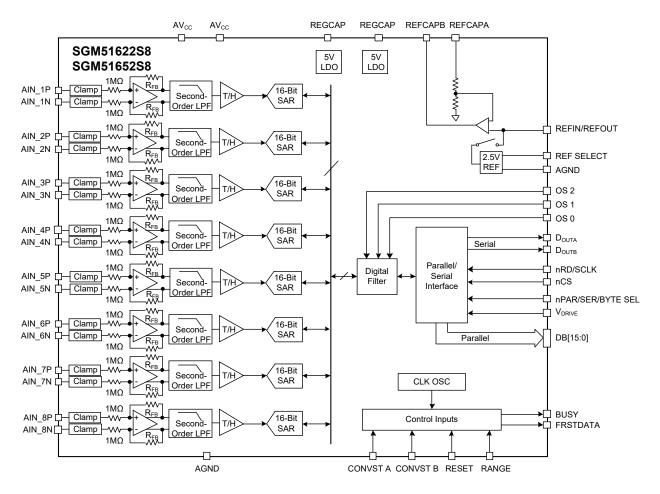


Figure 7. Block Diagram

DETAILED DESCRIPTION

Converter Details

The SGM51622S8 is a unipolar 5V supply SAR ADC. It supports true bipolar signal input. The device can perform all eight channels simultaneously sampling at speed of 250kHz.

The SGM51652S8 is a unipolar 5V supply SAR ADC. It supports true bipolar signal input. The device can perform all eight channels simultaneously sampling at speed of 500kHz.

Analog Input

Analog Input Ranges

The ADCs input range is selected by setting the logic voltage of the RANGE pin. If the pin is set to logic high, the $\pm 10V$ input range is selected for all channels. If the pin is set to logic low, the $\pm 5V$ input range is selected for all channels.

It is suggested that the input range pin should be set by hardware pull-up or pull-down. After the system is powered up, a reset pulse must be issued to ensure that the input range is correctly set for all channels.

When in a power-down mode, it is recommended to tie the analog inputs to GND.

Analog Input Impedance

The input impedance of each channel is $\geq 1M\Omega$.

Analog Input Clamp Protection

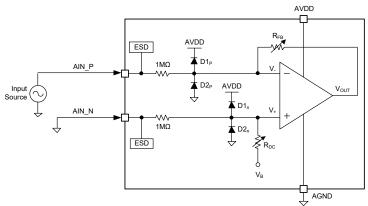

The chip has the input over-voltage protection (OVP) circuit. Table 1 shows these characteristics.

Table 1. Input Over-Voltage Protection Limits when AVDD = 5V⁽¹⁾

Input Condition (V _{OVP} = ±20V)	ADC Output	Comments
$ V_{IN} < V_{RANGE} $	Valid	Work normally.
$ V_{RANGE} < V_{IN} < V_{OVP} $	Saturated	ADC output is saturated, and the internal protection circuits are on.
$ V_{IN} > V_{OVP} $	Saturated	This may damage the chip.

NOTE: 1. AGND = 0V, $|V_{RANGE}|$ is the maximum input voltage for any selected input range, and $|V_{OVP}|$ is the break-down voltage for the internal OVP circuit. Assume that R_s is approximately 0 Ω .

In the following condition, the input signal is applied before analog AVDD is powered on or the input signal is applied and keep analog AVDD floating, the input OVP circuits will be on. And if the input voltage exceeds |V_{OVP}|, the chip will be damaged.

DETAILED DESCRIPTION (continued)

Analog Input Antialiasing Filter

The SGM51622S8 and SGM51652S8 have an internal second-order low pass filter in front of ADC core. If ±5V input range is selected, the -3dB bandwidth is about 24kHz. If ±10V input range is selected, the -3dB bandwidth is about 24kHz.

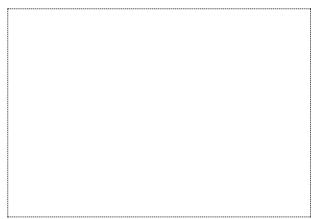
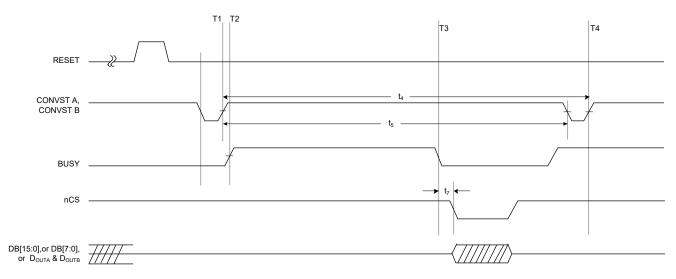


Figure 9. Analog Antialiasing Filter Frequency Response

	••••••


Figure 10. Analog Antialias Filter Phase Response

Track-and-Hold Amplifiers

This section briefly introduces how the device works and interfaces with the host controller.

- Figure 11 shows the timing marks, there are three events T1 ~ T3.
- T1: On the rising edge of CONVST x, the input signals are simultaneously sampled by the device.
- T2: The device starts converting of all the input signals, the conversion is driven by internal clock.
- T3: After all conversions completed, the BUSY goes to low. On the following edge of BUSY, the device goes to tracking mode.
- T4: On a new rising edge of CONVST x, a new conversion cycle is started.

DETAILED DESCRIPTION (continued)

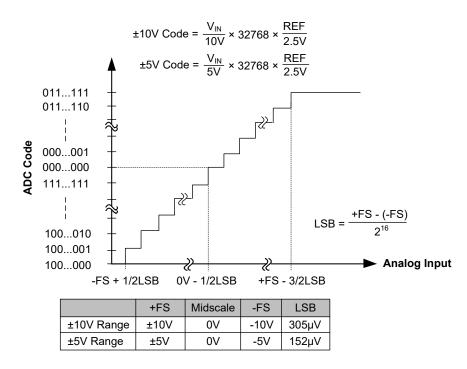


Figure 11. Timing Diagram of Device Operation

ADC Transfer Function

The chip output code is in twos complement format.

The ideal transfer function of SGM51622S8/SGM51652S8 is shown in Figure 12.

NOTE: The LSB size is dependent on the analog input range selected.

Figure 12. SGM51622S8/SGM51652S8 Transfer Characteristics

DETAILED DESCRIPTION (continued)

Internal/External Reference

The SGM51622S8 and SGM51652S8 have an internal 2.5V on-chip reference. They can work with internal reference or external reference is decided by REF SELECT pin. When this pin is set to logic high, the internal reference is enabled. When this pin is set to logic low, the internal reference is disabled and an external 2.5V reference must be applied.

After a reset, the chip refreshes the reference selection status. It is decided by the REF SELECT pin setting.

For both the internal reference and the external reference, the chip needs decoupling caps on the REFIN/REFOUT pin. At the same time, the REFCAPA and REFCAPB must be tied together. And a typical decoupling 10µF capacitor must be applied between this pin and REFGND pin.

External Reference Mode

An external reference chip SGM4029-2.5 is used to drive three pcs of ADCs. A demo circuit connection is shown in Figure 13.

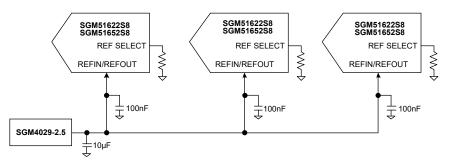
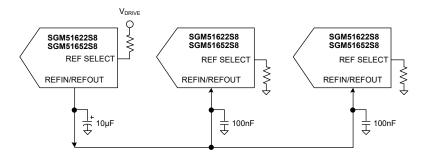
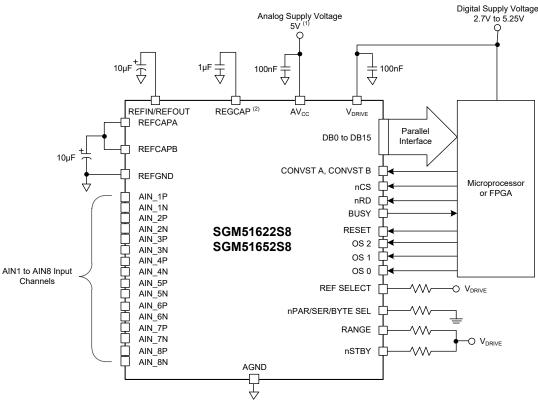



Figure 13. Single External Reference Driving Multiple SGM51622S8/SGM51652S8 REFIN Pins

Internal Reference Mode

In a multi-chip system, one SGM51622S8 or SGM51652S8 on-chip reference can be configured as output, the other chip can be configured as external reference input mode. A demo circuit connection is shown in Figure 14.


Figure 14. Internal Reference Driving Multiple SGM51622S8/SGM51652S8 REFIN Pins

DETAILED DESCRIPTION (continued)

Typical Connection Diagram

A typical connection circuit is shown in Figure 15. Note that all power supply pins and reference pins should be decoupled by the decoupling capacitors.

After the system is powered up, a reset should be issued to the chip to ensure all hardware setting is configured correctly.

NOTES:

1. At least one decoupling capacitor should be applied to each AV_{CC} pin (pin 1, pin 37, pin 38, pin 48).

2. At least one decoupling capacitor should be applied to each REGCAP pin (pin 36, pin 39)

Figure 15. Typical Connection Diagram

Power-Down Modes

The SGM51622S8 and SGM51652S8 support two low power modes, standby mode and shutdown mode. Table 2 shows how to configure the chip into according mode.

In standby mode, the chip only powers down the input buffer amplifier and ADC core. The current consumption is about 9.2mA. To quit the standby mode, the wake-up time is about 360µs.

In shutdown mode, the chip powers down all the internal circuits. The current consumption is about 16µA. To quit the shutdown mode, a RESET signal must be applied. The wake-up time is about 17ms.

Table 2. Power-Down Mode Selection

Power-Down Mode	nSTBY	RANGE	
Standby	0	1	
Shutdown	0	0	

DETAILED DESCRIPTION (continued)

Conversion Control

Simultaneous Sampling on All Analog Input Channels

To sample and convert all 8 input channels simultaneously, CONVST A and CONVST B can be tied together.

Simultaneously Sampling Two Sets of Channels

CONVST A controls the sampling and conversion of V1 to V4 channel. CONVST B controls the sampling and conversion of V5 to V8 channel.

In a conversion process cycle, after both CONVST A and CONVST B rising edges have been issued, then BUSY goes high indicates that ADC is doing conversion. The data read out is no different with the operating of CONVST A and CONVST B tied together.

Note that all un-used input channels should be tied to system ground (AGND).

Digital Interface

The SGM51622S8 and SGM51652S8 have three operating interface modes: parallel interface mode, serial interface mode and parallel byte interface mode.

Table 3. Interface Mode Selection

nPAR/SER/BYTE SEL	DB15	Interface Mode
0	0	Parallel interface mode
1	0	Serial interface mode
1	1	Parallel byte interface mode

Serial Interface (nPAR/SER/BYTE SEL = 1)

In serial interface mode, there are two options: two serial data output pins mode (D_{OUTA} and D_{OUTB} output data simultaneously) and one serial data output pin mode (D_{OUTA} or D_{OUTB} , D_{OUTB} , D_{OUTA} is preferred).

In two serial data output pins mode, channel V1 to V4 data are shifted by D_{OUTA} , channel V5 to V8 data are shifted by D_{OUTB} . The falling edge of the nCS calls D_{OUTA} and D_{OUTB} outing of the three-state and shifts out the MSB of the ADC result. The ADC data is shifted out at the rising edge of SCLK.

In one serial data output pin mode, D_{OUTA} or D_{OUTB} can be used as data output pin. If D_{OUTA} is selected, the ADC results sequence is V1 to V8. If D_{OUTB} is selected, the ADC results sequence is V5 to V8 and then V1 to V4.

In serial operation mode, Figure 5 shows a demo operating timing diagram of reading one channel ADC data and framed by nCS.

Digital Filter

The SGM51622S8 and SGM51652S8 have an internal configurable low pass digital filter. The oversampling rate is set by OS 2, OS 1 and OS 0 pins. OS 2 sets the MSB bit, OS 1 sets the middle weighting bit, and OS 0 sets the LSB bit. Table 4 shows the different available oversampling rates.

Once the OS x (OS 2, OS 1 and OS 0) pins setting are changed, the new setting will be latched on the falling edge of BUSY. And the new setting will take effect on the next conversion cycle. A demo time sequence is shown in Figure 16.

In the oversampling modes, CONVST A and CONVST B must be tied together to let ADC work correctly. The CONVST x (CONVST A and CONVST B) triggers the first conversion of each input channels in one conversion frame, the left conversions according to oversampling rates will be triggered internally by ADC. For example, if oversampling rate is set to 4, CONVST x triggers the first conversion and the left 3 times of conversions are triggered internally by ADC in one frame.

DETAILED DESCRIPTION (continued)

Refer to Table 4, the oversample rate is increased, and the SNR is increased. While the useful equal -3dB frequency bandwidth is decreased accordingly.

In Figure 16, for example, if the oversample rate is increased by 2, the conversion time is increased by 2. To let the host controller has adequate time to read out the ADC conversion results, the total conversion cycle needs to be extended accordingly.

Note that the falling edge of BUSY is used to update ADC output data register by the ADC chip internally in Figure 16. The host controller cannot use the falling edge of BUSY to trigger a read operation, in other words, the reading of ADC conversion data must not be started at this falling edge.

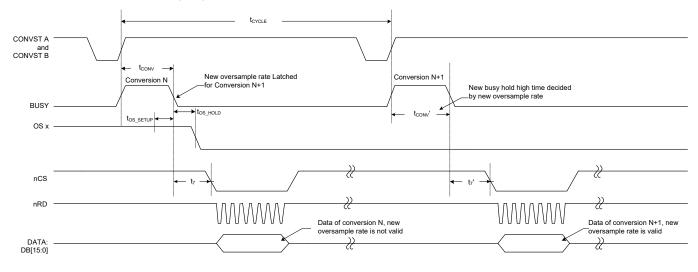
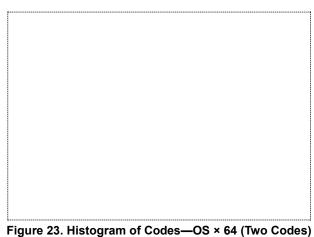


Figure 16. OS x Pin Timing

OS[2:0]	OS Ratio	SNR 5V Range (dB)	SNR 10V Range (dB)	3dB BW 5V Range (kHz)	3dB BW 10V Range (kHz)	Maximum Throughput CONVST Frequency (kHz)
000	No OS					
001	2					
010	4					
011	8					
100	16					
101	32					
110	64					
111	Invalid					

Table 4. Oversample Bit Decoding


DETAILED DESCRIPTION (continued)

The effect of oversampling on the code spread in a DC histogram plot is shown in Figure 17 to Figure 23. With the increase of the oversample rate, the spread of the codes decreases.

SG Micro Corp

DETAILED DESCRIPTION (continued)

The digital filter frequency profiles for the different oversampling rates are shown in Figure 24 to Figure 29.

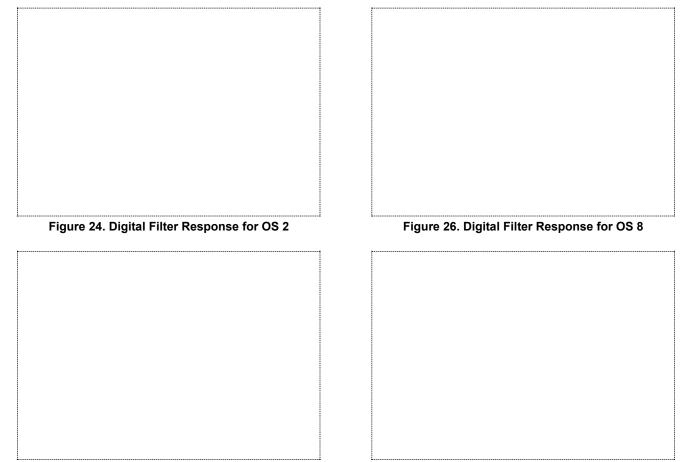


Figure 25. Digital Filter Response for OS 4

Figure 27. Digital Filter Response for OS 16

DETAILED DESCRIPTION (continued)

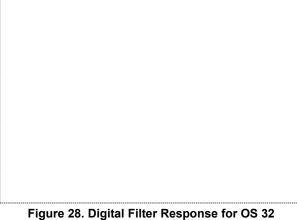
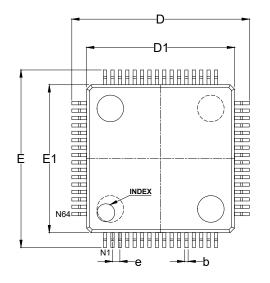
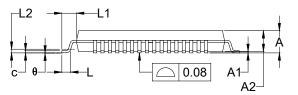
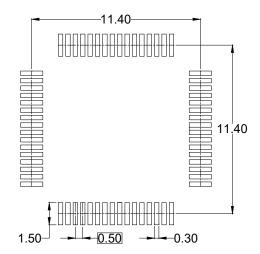



Figure 29. Digital Filter Response for OS 64




PACKAGE OUTLINE DIMENSIONS

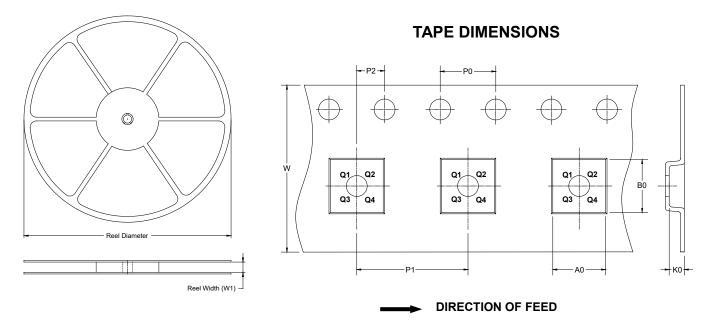
LQFP-10×10-64L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters					
	MIN	MOD	MAX			
А	-	-	1.600			
A1	0.050	-	0.150			
A2	1.350	1.400	1.450			
b	0.170 -		0.270			
С	0.090	-	0.200			
D	11.800	-	12.200			
D1	9.900	-	10.100			
E	- 11.800		12.200			
E1	9.900	-	10.100			
е	0.500 BSC					
L	0.450	-	0.750			
L1	1.000 REF					
L2	0.250 BSC					
θ	0°	-	7°			

SIDE VIEW

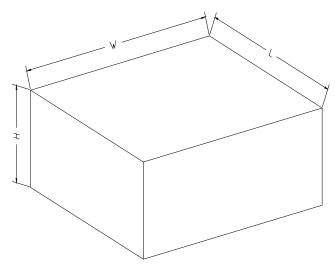
NOTES:


1. This drawing is subject to change without notice.

The dimensions do not include mold flashes, protrusions or gate burrs.
 Reference JEDEC MS-026.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
LQFP-10×10-64L	13″	24.4	12.5	12.5	2.05	4.0	16.0	2.0	24.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length Width (mm) (mm)		Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

