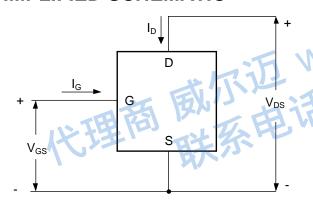


SGM42401Q

Automotive Low-side Driver with Self-Protection **Featuring Temperature and Current Limit**


GENERAL DESCRIPTION

The SGM42401Q is a low-side smart discrete device with three terminals that provides protections against over-current, over-temperature and ESD. It also features integrated drain-to-gate clamping for over-voltage protection. This device is well-suited for harsh automotive environments and offers reliable protection.

The SGM42401Q is AEC-Q100 qualified (Automotive Electronics Council (AEC) standard Q100 Grade 1) and it is suitable for automotive applications.

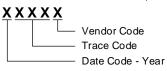
The SGM42401Q is available in a Green SOT-223-3 package.

SIMPLIFIED SCHEMATIC

FEATURES

- AEC-Q100 Qualified for Automotive Applications **Device Temperature Grade 1**
 - $T_A = -40^{\circ}C$ to $+125^{\circ}C$
- Full Set of Protections
 - Short-Circuit Protection
 - **Over-Voltage Protection**
 - **ESD Protection**
 - Thermal Shutdown with Automatic Restart
- Clamp Integrated for Switching of Inductive Loads
- Support Gate Threshold Voltage: 1.75V (TYP)
- dV/dt Robustness
- Output Clamp Voltage: 42V
- Static Drain-to-Source On-Resistance: 90mΩ (TYP) at 10V
- Continuous Drain Current: 3.5A (TYP)
- **Output Peak Current (Thermal Limited): 8.5A**
- **Logic Level Input Capable of Analog Driving**
- Available in a Green SOT-223-3 Package

APPLICATIONS


Switch Resistance, Inductance and Capacitance Loads Substitute Discrete Circuits and Electromechanical Relays Automotive/Industrial

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE SPECIFIED TEMPERATURE RANGE		ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
SGM42401Q	SOT-223-3	-40°C to +125°C	C to +125°C SGM42401QKC3G/TR		Tape and Reel, 2500	

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

ADSOLUTE INIAAIINIONI KATINGS
Internally Clamped Drain-to-Source Voltage
V _{DSS} 42V
$V_{DSS} (T_J = -40^{\circ}C)$ 38V
Internally Clamped Drain-to-Gate Voltage
V _{DGR} 42V
$V_{DGR} (T_J = -40^{\circ}C)$
Gate-to-Source Voltage, V _{GS} ±14V
Continuous Drain Current, I _{DS} Internally Limited
Maximum Continuous Drain Current, I_{DS} ($T_A = +25$ °C)3.5A
Single Pulse Drain-to-Source Avalanche Energy ($V_{DD} = 32V$,
$V_G = 5.0V$, $I_{PK} = 1.0A$, $L = 300$ mH, $R_{G_EXT} = 25\Omega$), E_{AS} (1)
430mJ
Load Dump Voltage (V _{GS} = 0V and 10V, R_I = 2.0 Ω , R_L = 9.0 Ω ,
t_d = 400ms), V_{LD} 40V
Package Thermal Resistance
SOT-223-3, θ _{JA}
SOT-223-3, θ _{JB}
SOT-223-3, θ _{JC}
Package Thermal Characterization Parameter
SOT-223-3, ψ _{JT}
SOT-223-3, Ψ _{JB} 43.6°C/W
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility (2) (3)
HBM8000V
CDM2000V

NOTES:

$$1. \ E_{\text{AS}} = \frac{1}{2} \times L \times {I_{\text{PK}}}^2 \times \left(1 - \frac{V_{\text{BAT}}}{V_{\text{BAT}} - V_{\text{CLAMP}}}\right)$$

- 2. For human body model (HBM), all pins comply with AEC-Q100-002 specification.
- 3. For charged device model (CDM), all pins comply with AEC-Q100-011 specification.

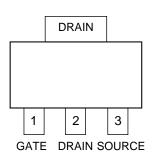
RECOMMENDED OPERATING CONDITIONS

Operating Ambient Temperature Range -40°C to +125°C Operating Junction Temperature Range -40°C to +150°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION


This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

(TOP VIEW)

SOT-223-3

PIN DESCRIPTION

PIN	NAME	SYMBOL	FUNCTION
1	GATE	G	Gate Input.
2	DRAIN	D	Drain.
3	SOURCE	S	Source.

ELECTRICAL CHARACTERISTICS

 $(T_J = +25^{\circ}C, \text{ unless otherwise noted.})$

Off Characteristics Vas = 0V, Ias = 10mA, T₂ = +25°C 38 °° 42 44 Vas = 0V, Ias = 10mA, T₂ = +25°C 38 °° 42 44 Vas = 0V, Ias = 10mA, T₂ = +25°C 40 42.5 45 Vas = 0V, Ias = 10mA, T₂ = +25°C 40 42.5 45 Vas = 0V, Ias = 10mA, T₂ = +25°C 40 42.5 45 Vas = 0V, Ias = 10mA, T₂ = +25°C 20 500 nA Gate Input Current Iasser Vas = 0V, Vas = 5V 20 500 nA Gate Input Current Iasser Vas = 0V, Vas = 5V 20 500 nA Gate Threshold Voltage Vas ± nV Ias = 0V, Vas = 5V 20 500 nA Gate Threshold Temperature Coefficient Vas ± nV Ias = 1.7A, T₂ = +25°C 90 140 Vas = 5.0V, Ias = 1.7A, T₂ = +25°C 90 140 140 Vas = 5.0V, Ias = 5.0V, Ias = 1.7A, T₂ = +25°C 90 140 Vas = 5.0V, Ias = 1.7A, T₂ = +25°C 90 140 Vas = 5.0V, Ias = 5.0V, Ias = 1.7A, T₂ = +25°C 90 140 Vas = 5.0V, Ias = 1.7A, T₂ = +25°C 90 140 Vas =	PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
Drain-to-Source Breakdown Voltage 10	Off Characteristics							
Province Provinc			$V_{GS} = 0V, I_{DS}$	s = 10mA, T _J = +25°C (2)	38 (3)	42	44	V
Drain Current at Zero Gate Voltage Ioss Vos = 0V, Vos = 32V, T _J = +125°C 200 500 nA	Drain-to-Source Breakdown Voltage (1)	V_{BR_DSS}	$V_{GS} = 0V, I_{DS}$	s = 10mA, T _J = +125°C (2)	40	42.5	45	
Drain Current at Zero Gate Voltage Ioss Vos = 0V, Vos = 32V, T _J = +125°C 200 500 nA			V _{GS} = 0V, V _{DS} = 32V, T _J = +25°C			25	300	nA
Gate Input Current I_GSSSF Vos. = 0V, Vos. = 5V 220 290 μA	Drain Current at Zero Gate Voltage	I _{DSS}				200	500	nA
On Characteristics (°) Cate Threshold Voltage V _{OS.Th} /T _J V _{OS. B} V _{OS. IoS} = 150μA 1.35 1.75 2.25 V Gate Threshold Voltage V _{OS.Th} /T _J V _{OS. B} 10V, I _{OS} = 1.7A, T _J = +25°C 90 140 Static Drain-to-Source On-Resistance R _{DSON} V _{OS. B} 5.0V, I _{OS} = 1.7A, T _J = +25°C 90 140 V _{OS. B} 5.0V, I _{OS. B} 1.7A, T _J = +125°C 130 160 V _{OS. B} 5.0V, I _{OS. B} 1.7A, T _J = +125°C 90 140 V _{OS. B} 5.0V, I _{OS. B} 1.7A, T _J = +125°C 90 140 V _{OS. B} 5.0V, I _{OS. B} 1.7A, T _J = +125°C 90 140 V _{OS. B} 5.0V, I _{OS. B} 1.7A, T _J = +125°C 90 140 V _{OS. B} 5.0V, I _{OS. B} 1.7A, T _J = +125°C 90 140 V _{OS. B} 5.0V, I _{OS. B} 1.7A, T _J = +125°C 90 140 V _{OS. B} 5.0V, I _{OS. B} 0.5A, T _J = +125°C 90 140 Turn-Off Time t _{O.M. B} V _{OS. B} 10V, I _{OS. B} 10° 87 110 μs Turn-Off Still Time t _{O.M. B} V _{OS. B} 10V, I _{OS. B} 10° 10% I _{OS. B} 87 110 μs	Gate Input Current	I _{GSSE}				220	290	μA
Gate Threshold Voltage V _{OS.TM} V _{OS. END} V _{OS. Bos. IoS. IoS. IoS. IoS. IoS. IoS. IoS. IoS}	<u> </u>	0001	50 - 7 0					·
Case Threshold Temperature Coefficient Vos. Th/TJ Vos. = 10V, los. = 1.7A, T.j. = +25°C 90 140 70 140 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 70 140 70 70 140 70 70 70 140 70 70 140 70 70 140 70 70 70 140 70 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 140 70 70 70 70 70 70 70	Gate Threshold Voltage	V _{GS TH}	$V_{GS} = V_{DS}, I_{D}$	os = 150µA	1.35	1.75	2.25	V
$ \text{Static Drain-to-Source On-Resistance} \text{Reson} \begin{array}{c} V_{\text{OS}} = 10V, \ I_{\text{OS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 10V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +125^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +125^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 5.0V, \ I_{\text{DS}} = 1.7A, \ T_{\text{J}} = +25^{\circ}\text{C} \\ V_{\text{OS}} = 1.7A, \ T_{\text{J}} = 125^{\circ}\text{C} \\ V_{\text{OS}} = 100, \ V_{\text{OS}} = 100, V_{\text{OS}} = 100, V_{\text{OS}} \\ V_{\text{OS}} $						3.0		-mV/°C
Static Drain-to-Source On-Resistance Roson Vos = 10V, los = 1.7A, T _J = +125°C 90 140			V _{GS} = 10V. Ir	os = 1.7A. T ₁ = +25°C		90	140	
$ \text{Static Drain-to-Source On-Resistance } \\ \text{Roson} \\ & \begin{array}{c} P_{\text{OSS}} = 5.0V, I_{\text{DS}} = 1.7A, T_{\text{J}} = +25^{\circ}\text{C}}{V_{\text{GS}} = 5.0V, I_{\text{DS}} = 1.7A, T_{\text{J}} = +125^{\circ}\text{C}}{130} & 140 \\ \hline V_{\text{GS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}}{V_{\text{GS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 90 & 140 \\ \hline V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}}{V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 90 & 140 \\ \hline V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 130 & 160 \\ \hline V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 130 & 160 \\ \hline V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.30 & 160 \\ \hline V_{\text{SS}} = 5.0V, I_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{SS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{SS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{SS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{SS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{DS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{DS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{DS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{DS}} = 10V, V_{\text{DS}} = 0.5A, T_{\text{J}} = +25^{\circ}\text{C}} & 1.1. & V \\ \hline V_{\text{DS}} = 10V, V_{\text{DS}} = $						130	160	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ V_{OS} = 5.0V, \ I_{DS} = 0.5A, \ T_J = +25^{\circ}C \\ V_{OS} = 5.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{OS} = 5.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{OS} = 5.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{OS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{OS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{OS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{OS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{OS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.5A, \ T_J = +125^{\circ}C \\ V_{DS} = 0.0V, \ I_{DS} = 0.0V, \ I_{DS$	Static Drain-to-Source On-Resistance	R _{DSON}						mΩ
Vos = 5.0V, los = 0.5A, T _J = +125°C 130 160								
Source-Drain Forward On Voltage V _{SD} V _{GS} = 0V, I _S = 7A							_	
Switching Characteristics		.,					160	
		V _{SD}	$V_{GS} = 0V, I_{S}$	= 7A		1.1		V
		Т	-	T		1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		t _{ON}	_					μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Time	t _{OFF}	V _{CS} = 10V.			87	110	μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Rise Time	t _{RISE}	$V_{DD} = 12V$,	10% I _{DS} to 90% I _{DS}		20	32	μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Fall Time	t _{FALL}		90% I _{DS} to 10% I _{DS}		41	55	μs
	Slew-Rate On	-dV _{DS} /dt _{ON}	111 - 4.732	70% to 50% V _{DD}		0.67	1.06	V/µs
$ \text{Current Limit} \\ \begin{array}{c} I_{\text{LIM}} \\ \\ I_{\text{DS}} = 10\text{V}, V_{\text{GS}} = 5\text{V}, T_{\text{J}} = +25^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, V_{\text{GS}} = 5\text{V}, T_{\text{J}} = +125^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, V_{\text{GS}} = 5\text{V}, T_{\text{J}} = +125^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, V_{\text{GS}} = 10\text{V}, T_{\text{J}} = +25^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, V_{\text{GS}} = 10\text{V}, T_{\text{J}} = +25^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, V_{\text{GS}} = 10\text{V}, T_{\text{J}} = +25^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, V_{\text{JS}} = 10\text{V}, T_{\text{J}} = +25^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, V_{\text{JS}} = 10\text{V}, T_{\text{J}} = +25^{\circ}\text{C} \\ \\ V_{\text{DS}} = 10\text{V}, T_{\text{J}} = 125^{\circ}\text{C} \\ \\ V_{\text{DS}} = $	Slew-Rate Off	dV_{DS}/dt_{OFF}		50% to 70% V_{DD}		0.28	0.45	V/µs
Current Limit I_{LIM} $V_{DS} = 10V, V_{GS} = 5V, T_J = +125^{\circ}C$ 4.2 5.2 6.2 $V_{DS} = 10V, V_{GS} = 10V, T_J = +25^{\circ}C$ 6 8.5	Self-Protection Characteristics (4)							
$ \begin{array}{ c c c c c } \hline \text{Current Limit} & & & & & & & & & & & & & & & & & & &$			$V_{DS} = 10V, V_{GS} = 5V, T_{J} = +25^{\circ}C$		6	8.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Current Limit		$V_{DS} = 10V$, $V_{GS} = 5V$, $T_{J} = +125$ °C		4.2	5.2	6.2	^
Temperature Limit (Turn-Off) T_{LIM_OFF} $V_{GS} = 5V^{(5)}$ 135 150 165 Thermal Hysteresis ΔT_{LIM_ON} $V_{GS} = 5V$ 15 Temperature Limit (Turn-Off) T_{LIM_OFF} $V_{GS} = 10V^{(5)}$ 135 150 165 Thermal Hysteresis ΔT_{LIM_ON} $V_{GS} = 10V^{(5)}$ 135 150 165 Thermal Hysteresis ΔT_{LIM_ON} $V_{GS} = 10V$ 15 Gate Input Characteristics (5) Gate Input Current in Device On State I_{GON} $V_{GS} = 5V$, $I_{DS} = 1A$ 220 $V_{GS} = 10V$, $I_{DS} = 1A$ 220 Gate Input Current in Current Limit State I_{GCL} $V_{GS} = 5V$, $V_{DS} = 10V$ 220 Gate Input Current in Thermal Limit Fault I_{GCL} $V_{GS} = 5V$, $V_{DS} = 10V$ 70	Current Limit	ILIM	V _{DS} = 10V, V _{GS} = 10V, T _J = +25°C		6	8.5		
Thermal Hysteresis $\Delta T_{LIM_ON} V_{GS} = 5V \qquad \qquad 15$ Temperature Limit (Turn-Off) $T_{LIM_OFF} V_{GS} = 10V ^{(5)} \qquad 135 150 165$ Thermal Hysteresis $\Delta T_{LIM_ON} V_{GS} = 10V \qquad \qquad 15$ Gate Input Characteristics			V _{DS} = 10V, V _{GS} = 10V, T _J = +125°C		4.7	5.7	6.7	1
Temperature Limit (Turn-Off) T_{LIM_OFF} $V_{GS} = 10V$ $^{(5)}$ 135 150 165 Thermal Hysteresis ΔT_{LIM_ON} $V_{GS} = 10V$ 15 Gate Input Characteristics $^{(5)}$ Gate Input Current in Device On State I_{GON} $V_{GS} = 5V$, $I_{DS} = 1A$ $V_{GS} = 10V$, $I_{DS} = 1A$ $V_{GS} = 10V$, $I_{DS} = 1A$ $V_{GS} = 10V$, $V_{DS} = 10V$ $V_{GS} = 10V$, $V_{DS} = 10V$ $V_{GS} = 10V$, $V_{DS} = 10V$ $V_{CS} = 10V$, $V_{DS} = 10V$ $V_{CS} = 10V$	Temperature Limit (Turn-Off)	T _{LIM_OFF}	V _{GS} = 5V (5)		135	150	165	
Temperature Limit (Turn-Off) T_{LIM_OFF} $V_{GS} = 10V$ $^{(5)}$ 135 150 165 Thermal Hysteresis ΔT_{LIM_ON} $V_{GS} = 10V$ 15 Gate Input Characteristics $^{(5)}$ Gate Input Current in Device On State I_{GON} $V_{GS} = 5V$, $I_{DS} = 1A$ $V_{GS} = 10V$, $I_{DS} = 1A$ $V_{GS} = 10V$, $I_{DS} = 1A$ $V_{GS} = 10V$, $V_{DS} = 10V$ $V_{GS} = 10V$, $V_{DS} = 10V$ $V_{GS} = 10V$, $V_{DS} = 10V$ $V_{CS} = 10V$, $V_{DS} = 10V$ $V_{CS} = 10V$	Thermal Hysteresis	ΔT _{LIM ON}	$V_{GS} = 5V$			15		
Thermal Hysteresis ΔT_{LIM_ON} $V_{GS} = 10V$ 15 Gate Input Characteristics (5) Gate Input Current in Device On State I_{GON} $V_{GS} = 5V$, $I_{DS} = 1A$ 220 μA Gate Input Current in Current Limit State I_{GCL} $V_{GS} = 10V$, $V_{DS} = 10V$ 220 μA Gate Input Current in Thermal Limit Fault $V_{GS} = 5V$, $V_{DS} = 10V$ 220 μA	Temperature Limit (Turn-Off)		V _{GS} = 10V (5))	135	150	165	1 ° ℃
Gate Input Characteristics (5) Gate Input Current in Device On State $I_{GON} = 10V, I_{DS} = 1A$ $V_{GS} = 10V, I_{DS} = 1A$ $V_{GS} = 10V, V_{DS} = 10V$ $V_{GS} = 5V, V_{DS} = 10V$	Thermal Hysteresis	ΔT _{LIM ON}				15		=
Gate Input Current in Device On State $I_{GON} = I_{GON} = I_{GON$						<u> </u>	I	
Gate Input Current in Device On State I_{GON} $V_{GS} = 10V$, $I_{DS} = 1A$ 220 μA Gate Input Current in Current Limit State I_{GCL} $V_{GS} = 5V$, $V_{DS} = 10V$ 220 μA Gate Input Current in Thermal Limit Fault $V_{GS} = 5V$, $V_{DS} = 10V$ $V_{GS} = 10V$ $V_{GS} = 5V$, $V_{DS} = 10V$	•	_	$V_{GS} = 5V$, $I_{DS} = 1A$			220		
Gate Input Current in Current Limit State I_{GCL} $V_{GS} = 5V, V_{DS} = 10V$ $V_{GS} = 10V, V_{DS} = 10V$ $V_{GS} = 10V, V_{DS} = 10V$ $V_{GS} = 5V, V_{DS} = 10V$	Gate Input Current in Device On State	I _{GON}						μA
Gate Input Current in Current Limit State I_{GCL} $V_{GS} = 10V$, $V_{DS} = 10V$ $V_{GS} = 10V$ $V_{GS} = 10V$ $V_{GS} = 5V$, $V_{DS} = 10V$						-		_
Gate Input Current in Thermal Limit Fault VGS = 5V, VDS = 10V 70	Gate Input Current in Current Limit State	I _{GCL}				220		μA
CTI	Gate Input Current in Thermal Limit Fault					70		
		I _{GTL}				70		PΑ

NOTES:

- 1. Pulse test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 2. Caused by internal clamping voltage, not actual breakdown voltage, breakdown voltage is 44V.
- 3. MIN value including -40°C.
- 4. Fault conditions are considered to be outside the normal operating range of the component.
- 5. Not subject to production testing.

TEST CIRCUITS AND WAVEFORMS

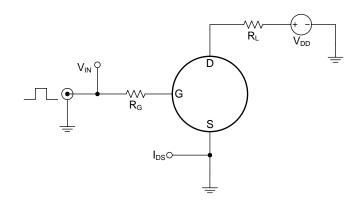


Figure 1. Test Circuit for Switching Resistive Loads

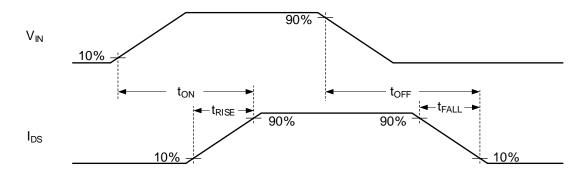


Figure 2. Waveforms for Switching Resistive Loads

TEST CIRCUITS AND WAVEFORMS (continued)

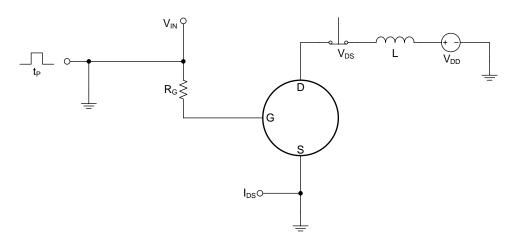


Figure 3. Test Circuit for Switching Inductive Loads

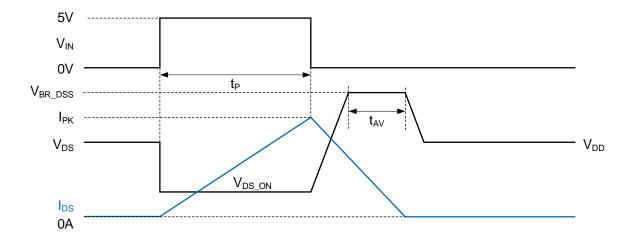
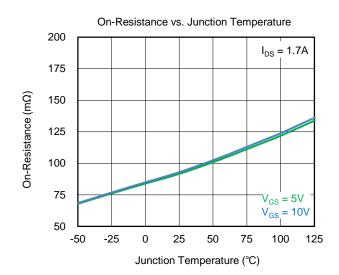
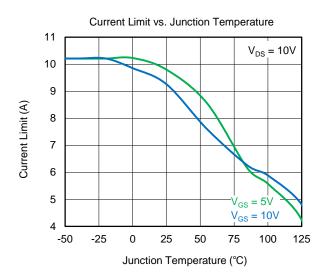
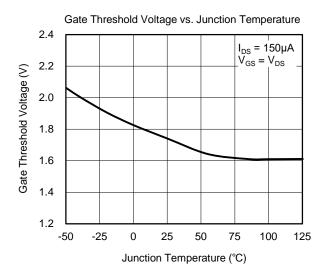
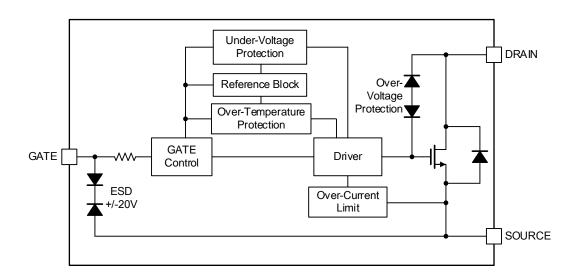





Figure 4. Waveforms for Switching Inductive Loads

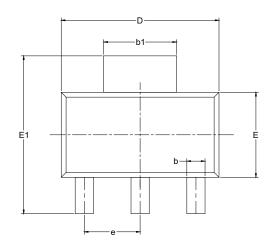
TYPICAL PERFORMANCE CHARACTERISTICS

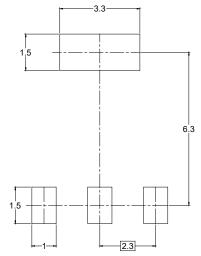


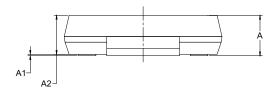
FUNCTIONAL BLOCK DIAGRAM

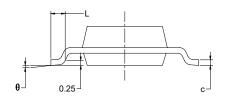
REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

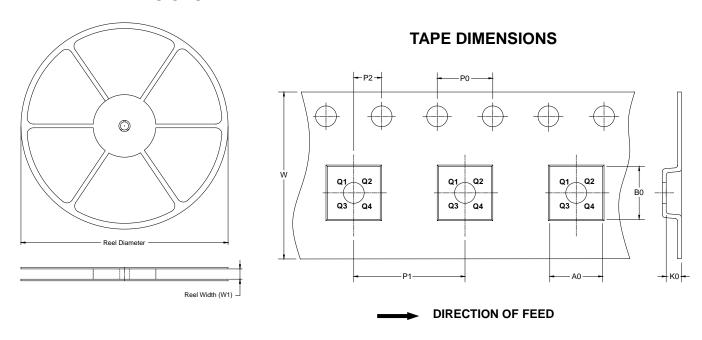

Changes from Original (SEPTEMBER 2024) to REV.A


Page




PACKAGE OUTLINE DIMENSIONS SOT-223-3

RECOMMENDED LAND PATTERN (Unit: mm)

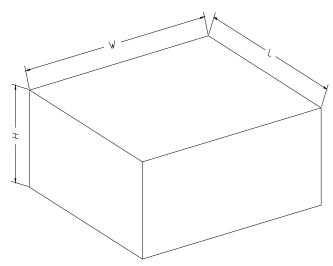


Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α		1.800		0.071	
A1	0.020	0.100	0.001	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.840	0.026	0.033	
b1	2.900	3.100	0.114	0.122	
С	0.230	0.350	0.009	0.014	
D	6.300	6.700	0.248	0.264	
E	3.300	3.700	0.130	0.146	
E1	6.700	7.300	0.264	0.287	
е	2.300	BSC	0.091	BSC	
L	0.750		0.030		
θ	0°	10°	0°	10°	

- Body dimensions do not include mode flash or protrusion.
 This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-223-3	13"	12.4	6.55	7.25	1.90	4.0	8.0	2.0	12.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)			Pizza/Carton		
13″	386	280	370	5	DD0002	